Skip to main content
Log in

Stellar Weak Rates and Mass Fractions of 20 Most Important fp-shell Nuclei with A < 65

  • Nuclear Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

This work presents stellar weak rates and mass fractions of 20 most important electron capture (ec) and beta-decay (bd) nuclei with A < 65, according to a recent study, during the presupernova evolution of massive stars. The mass fractions of these nuclei were calculated using the Saha’s equation, which assumes nuclear statistical equilibrium for a set of initial conditions (\(T_9\), \(\rho\) and \(Y_e\)) that represents the trajectory which a massive star’s central region takes after its silicon core burns. Our computed mass fractions were found in decent comparison in most cases, and up to a factor 4 difference was noted when compared with the Independent Particle Model results. The weak interaction (ec and bd) rates were calculated in a totally microscopic fashion using the proton-neutron quasiparticle random phase approximation model and without assuming the Brink-Axel hypothesis. The rates were computed for a wide range of density (\(10 -10^{11}\)) \(g/cm^3\) and temperature (\(0.01 - 30\)) GK. In comparison with large-scale shell-model, our computed rates were found bigger at high values of core temperature. The current study may contribute in a more realistic simulation of stellar evolution processes and modeling of core-collapse supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. A. Burrows, J.M. Lattimer, Astrophys. J. 270, 735 (1983)

    Article  ADS  Google Scholar 

  2. H.A. Bethe, G.E. Brown, J. Applegate, J.M. Lattimer, Nucl. Phys. A 234, 487 (1979)

    Article  ADS  Google Scholar 

  3. D. Arnett, Supernovae and Nuclei, Princeton University Press, (1996)

  4. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 42, 447 (1980)

    Article  ADS  Google Scholar 

  5. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. Suppl. Ser. 48, 279 (1982)

    Article  ADS  Google Scholar 

  6. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 252, 715 (1982)

    Article  ADS  Google Scholar 

  7. G.M. Fuller, W.A. Fowler, M.J. Newman, Astrophys. J. 293, 1 (1985)

    Article  ADS  Google Scholar 

  8. T. Weaver, et al., Numerical Astrophys. S (1985)

  9. M.B. Aufderheide, I. Fushiki, S.E. Woosley, D.H. Hartmann, Astrophys. J. 91, 389–417 (1994)

    Article  Google Scholar 

  10. M.C. Vetterli et al., Phys. Rev. C 40, 559 (1989)

    Article  ADS  Google Scholar 

  11. S. El-Kateb et al., Phys. Rev. C 49, 3128 (1994)

    Article  ADS  Google Scholar 

  12. A. Williams et al., Phys. Rev. C 51, 1144 (1995)

    Article  ADS  Google Scholar 

  13. J.U. Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 71, 149–345 (1999)

    Article  ADS  Google Scholar 

  14. J.U. Nabi, H.V. Klapdor-Kleingrothaus, At. Data Nucl. Data Tables 88, 237 (2004)

    Article  ADS  Google Scholar 

  15. K. Langanke, G. Martinez-Pinedo, Nucl. Phys. A 673, 481 (2000)

    Article  ADS  Google Scholar 

  16. A. Heger, S. Woosley, G. Martinez-Pinedo, K. Langanke, Astrophys. J. 560, 307 (2001)

    Article  ADS  Google Scholar 

  17. K. Langanke, G. Martinez-Pinedo, At. Data Nucl. Data Tables 79, 1 (2001)

    Article  ADS  Google Scholar 

  18. J.U. Nabi, A. Ullah, A.A. Khan, Astrophys. J. 911 93 (2021)

  19. R. Ferreira, A. Dimarco, A.R. Samana, C.A. Barbero, Astrophys. J. 784, 24 (2014)

    Article  ADS  Google Scholar 

  20. D. Brink, Rep. Prog. Phys. 21, 144 (1958)

    Article  ADS  Google Scholar 

  21. A.A. Dzhioev, K. Langanke, G. Martinez-Pinedo, A.I. Vdovin, Ch. Stoyanov, Phys. Rev. C 101(2020)

  22. E. Litvinova, C. Robin, Phys. Rev. C 103(2021)

  23. T. Rauscher, F.-K. Thielemann, At. Data Nucl. Data Tables 75, 1 (2000)

    Article  ADS  Google Scholar 

  24. T. Rauscher, Astrophys. J. Suppl. Ser. 147, 403 (2003)

    Article  ADS  Google Scholar 

  25. G. Audi, F. Kondev, M. Wang, W. Huang, S. Naimi, Chin. Phys. C 41(2017)

  26. P. Möller, A.J. Sierk, T. Ichikawa, H. Sagawa, At. Data Nucl. Data Tables 109, 1 (2016)

    Article  ADS  Google Scholar 

  27. J.U. Nabi, PhD Thesis, Microscopic Calculation of Weak Interaction Rates in Stellar Environment, University of Heidelberg, (1999)

  28. K. Muto, E. Bender, T. Oda, H.V. Klapdor, Z. Phys, A 341, 407–415 (1992)

    Google Scholar 

  29. J.C. Hardy, I.S. Towner, Phys. Rev. C 79(2009)

  30. K. Nakamura, Particle Data Group, J. Phys. G, Nucl. Part. Phys. 37 075021 (2010)

  31. N.B. Gove, M.J. Martin, At. Data Nucl. Data Tables 10, 205 (1971)

    Article  ADS  Google Scholar 

  32. J.U. Nabi, A.N. Tawfik, N. Ezzelarab, A.A. Khan, Phys. Scr. 91(2016)

  33. J.U. Nabi, A.N. Tawfik, N. Ezzelarab, A.A. Khan, Astrophys. Space Sci. 361, 71 (2016)

    Article  ADS  Google Scholar 

  34. I.R. Seitenzahl, D.M. Townsley, F. Peng, J.W. Truran, At. Data Nucl. Data Tables 95, 96–114 (2009)

    Article  ADS  Google Scholar 

  35. J.U. Nabi, N. Mazhar, C. W. Johnson, (Submitted to Phys. Rev. C (2021+))

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Ullah.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, A., Nabi, JU. Stellar Weak Rates and Mass Fractions of 20 Most Important fp-shell Nuclei with A < 65. Braz J Phys 52, 13 (2022). https://doi.org/10.1007/s13538-021-01024-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13538-021-01024-0

Keywords

Navigation