Skip to main content
Log in

Prospect of triggering the 178m2Hf isomer and the role of resonance conversion

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

A mechanism of triggering the 12.7keV E3 transition, based on the new decay mode of the 31y isomer via resonance internal conversion and emission of a 1.4keV X-ray quantum, is considered. Actually, this decay mode was observed previously in the decay of 45- and 46-fold ions of 125Te . For the purpose of triggering, the atomic radiative vertex has to be induced by resonance radiation. This mechanism makes triggering by an order of magnitude more efficient than triggering a bare nucleus, and is achieved at a lower combination frequency. An experiment is proposed for the direct observation of the new decay mode. This also offers a new way of resonance scattering of these X-rays. Triggering through higher-lying 2573 and 2805keV states is also considered. The results are extended to the general problem of triggering. The main obstacle for enhancing the efficiency is a high internal conversion rate. For this reason, shape isomers with low multipole order --E1 , M1 , and with a high enough energy of triggering transition are of interest for triggering. The partial ionization of the outer electrons will also help. The same recommendations hold for triggering isomers in laser-produced plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.B. Collins, F. Davanloo, A.C. Rusu, Phys. Rev. C 61, 054305 (2000).

    Google Scholar 

  2. C.B. Collins, N.C. Zoita, A.C. Rusu, Europhys. Lett. 57, 677 (2002).

    Google Scholar 

  3. F.J. Agee, A.Y. Maitsuura, in Isomers and Quantum Nucleonics (JINR, Dubna, 2006) p. 9.

  4. I. Bikit, I.V. Anicin, M. Krmar, J. Phys. G: Nucl. Part. Phys. 19, 1359 (1993).

    Google Scholar 

  5. C.B. Collins, J.J. Carroll, T.W. Sinor, M.J. Byrd, D.G. Richmond, K.N. Taylor, Phys. Rev. C 42, R1813 (1990).

  6. I. Bikit, L. Lakosi, J. Safar, L. Concic, Astrophys. J. 522, 419 (1999).

    Google Scholar 

  7. I. Ahmad, J.C. Banar, J.A. Becker, Phys. Rev. Lett. 87, 072503 (2001)

    Google Scholar 

  8. S.M. Mullins, G.D. Dracoulis, A.P. Byrne, T.R. McGoram, S. Bayer, W.A. Seale, F.G. Kondev, Phys. Lett. B 393, 279 (1997).

    Google Scholar 

  9. N.K. Kuzmenko, V.M. Mikhailov, V.O. Nesterenko, Izv. Akad. Nauk, Ser. Fiz. 50, 1914 (1986).

    Google Scholar 

  10. Yang Sun, Xian-Rong Zhou, Gui-Lu Long, Phys. Lett. B 589, 83 (2004).

  11. V.G. Soloviev, Theory of Complex Nuclei (Pergamon, Oxford, 1976).

  12. S.A. Karamian, J.J. Carroll, S. Iliev, S.P. Tretyakova, Phys. Rev. C 75, 057301 (2007).

    Google Scholar 

  13. F.R. Xu, P.M. Walker, R. Wyss, Phys. Rev. C 62, 014301 (2000).

    Google Scholar 

  14. F.F. Karpeshin, I.M. Band, M.B. Trzhaskovskaya, Nucl. Phys. A 654, 579 (1999).

    Google Scholar 

  15. B.A. Zon, F.F. Karpeshin, Zh. Exp. Teor. Fiz. 97, 401 (1990) (Sov. Phys. JETP (USA) 70, 224 (1990)).

  16. F.F. Karpeshin, Hyperfine Interact. 143, 79 (2002).

  17. F.F. Karpeshin, Part. Nucl. 37, 284 (2006).

  18. F.F. Karpeshin, Propmpt Fission in Muonic Atoms (Nauka, St. Petersburg, 2006).

  19. D.F. Zaretsky, F.F. Karpeshin, Sov. J. Nucl. Phys. 29, 306 (1979).

    Google Scholar 

  20. F.F. Karpeshin, M.R. Harston, F. Attallah, Phys. Rev. C 53, 1640 (1996).

    Google Scholar 

  21. F. Attallah, M. Aiche, J.F. Chemin, Phys. Rev. C 55, 1665 (1997).

    Google Scholar 

  22. T. Carreyre, M.R. Harston, M. Aiche, Phys. Rev. C 62, 024311 (2000).

    Google Scholar 

  23. M.R. Harston, T. Carreyre, J.F. Chemin, F.F. Karpeshin, M.B. Trzhaskovskaya, Nucl. Phys. A 676, 143 (2000).

    Google Scholar 

  24. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. At. Nucl. 71, 1383 (2008).

    Google Scholar 

  25. F.F. Karpeshin, M.B. Trzhaskovskaya, Phys. Rev. C 76, 054313 (2007).

    Google Scholar 

  26. F.F. Karpeshin, I.M. Band, M.B. Trzhaskovskaya, M.A. Listengarten, Phys. Lett. B 372, 1 (1996).

    Google Scholar 

  27. I.M. Band, M.B. Trzhaskovskaya, C.W. Nestor jr., P.O. Tikkanen, S. Raman, At. Data Nucl. Data Tables 81, 1 (2002).

    Google Scholar 

  28. S. Kishimoto, Y. Yoda, Y. Kobayashi, Phys. Rev. C 74, 031301(R) (2006).

  29. V.B. Berestetsky, E.M. Lifshitz, L.P. Pitaevsky, Relativistic Quantum Theory, part 1 (Nauka, Moscow, 1969).

  30. O. Bohr, B. Mottelson, Nuclear Structure, Vols. I and II (W.A. Benjamin Inc., N.-Y., Amsterdam, 1969).

  31. R.B. Firestone, Table of Isotopes, 8th ed. (LBNL, University of California, 1998).

  32. A.B. Hayes, D. Cline, C.Y. Wu, Phys. Rev. Lett. 89, 242501 (2002).

    Google Scholar 

  33. F.F. Karpeshin, Yu.N. Novikov, M.B. Trzhaskovskaya, Yad. Fiz. 67, 234 (2004) (Phys. At. Nucl. (USA) 67, 217 (2004)).

  34. I.N. Izosimov, JINR E6-2006-109

  35. V.I. Goldansky, V.S. Letokhov, Zh. Exp. Teor. Fiz. 67, 513 (1967) (Sov. Phys. JETP 40, 254 (1974)).

  36. B.A. Zon, V.E. Chernov, Phys. Lett. B 383, 367 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Trzhaskovskaya.

Additional information

W. Nazarewicz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karpeshin, F.F., Trzhaskovskaya, M.B. & Zhang, J. Prospect of triggering the 178m2Hf isomer and the role of resonance conversion. Eur. Phys. J. A 39, 341–348 (2009). https://doi.org/10.1140/epja/i2008-10714-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2008-10714-3

PACS

Navigation