Skip to main content
Log in

The challenges of finite-system statistical mechanics

  • Dynamics and Thermodynamics with Nuclear Degrees of Freedom
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

In this paper, we review the main challenges associated with the statistical mechanics of finite systems, with a particular emphasis on the present understanding of phase transitions in the framework of information theory. We show that this is a very powerful formalism allowing to treat in a thermodynamically consistent way many difficult problems in the statistical treatment of finite, open, transient and expanding systems. The first point we analyze is the problem of boundary conditions, which in the framework of information theory must also be treated statistically. We recall that the different ensembles do not lead to the same equation of states, in particular in the region of a first-order phase transition, and we stress the fact that different statistical ensembles may be relevant to heavy-ion physics depending upon the actual experimental conditions. Finally, we present a coherent description of first-order phase transitions demonstrating the equivalence between the Yang-Lee theorem, the occurrence of bimodalities in the intensive ensemble and the presence of inverted curvatures of the thermodynamic potential of the extensive ensemble. We stress that this discussion is not restricted to the possible occurrence of negative specific heat, but can also include negative compressibilities and negative susceptibilities, and in fact any curvature anomaly of the thermodynamic potential. Since the relevant entropy surface explored in nuclear multifragmentation is not yet well understood and largely debated in the community, the experimental evidence of new thermodynamic anomalies is one of the important challenges of future heavy-ion experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Dauxois, Dynamics and Thermodynamics of Systems with Long Range Interactions, Lect. Notes Phys., Vol. 602 (Springer, 2002).

  2. D. Lynden-Bell, R. Wood, Mon. Not. R. Astron. Soc. 138, 495 (1968)

    ADS  Google Scholar 

  3. R.M. Lynden-Bell, Mol. Phys. 86, 1353 (1995).

    Article  Google Scholar 

  4. J. Barré, D. Mukamel, S. Ruffo, Phys. Rev. Lett. 87, 030601 (2001)

    Article  ADS  Google Scholar 

  5. T. Tatekawa, F. Bouchet, T. Dauxois, S. Ruffo, Phys. Rev. E 71, 056111 (2005).

    Article  MathSciNet  ADS  Google Scholar 

  6. M. Schmidt, Phys. Rev. Lett. 86, 1191 (2001).

    Article  ADS  Google Scholar 

  7. M. D'Agostino, Phys. Lett. B 473, 219 (2000).

    Article  ADS  Google Scholar 

  8. F. Gobet, Phys. Rev. Lett. 89, 183403 (2002).

    Article  ADS  Google Scholar 

  9. E. Melby, Phys. Rev. Lett. 83, 3150 (1999)

    Article  ADS  Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, 1980) Chapt. 3.

  11. K. Huang, Statistical Mechanics (John Wiley and Sons Inc., 1963) Chapt. 5.

  12. R.C. Tolman, Principles of Statistical Mechanics (Oxford University Press, London, 1962).

  13. M. Rasetti, Modern Methods in Statistical Mechanics (World Scientific, Singapore, 1986).

  14. E.T. Jaynes, Information theory and statistical mechanics, Stat. Phys., Brandeis Lect. 3, 160 (1963).

    MathSciNet  Google Scholar 

  15. D.H.E. Gross, Microcanonical Thermodynamics: Phase transitions in Finite Systems, Lect. Notes Phys., Vol. 66 (Springer, 2001).

  16. R. Balian, From Microphysics to Macrophysics (Springer Verlag, 1982).

  17. T.L. Hill, Thermodynamics of Small Systems (Dover, New York, 1994).

  18. S. Abe, Y. Okamoto, Nonextensive Statistical Mechanics and its Applications, Lect. Notes Phys., Vol. 560 (Springer, 2001).

  19. D.H.E. Gross, this topical issue and references therein.

  20. F. Bouchet, J. Barré, J. Stat. Phys. 118, 1073 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  21. F. Leyvraz, S. Ruffo, Physica A 305, 58 (2002).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. F. Gulminelli, Ph. Chomaz, Phys. Rev. E 66, 046108 (2002).

    Article  ADS  Google Scholar 

  23. M. Costeniuc, R.S. Ellis, H. Touchette, J. Math. Phys. 46, 063301 (2005).

    Article  MathSciNet  Google Scholar 

  24. M.S.S. Challa, J.H. Hetherington, Phys. Rev. Lett. 60, 77 (1988)

    Article  ADS  Google Scholar 

  25. W. Thirring, Z. Phys. 235, 339 (1970).

    Article  Google Scholar 

  26. A. Huller, Z. Phys. B 93, 401 (1994).

    Article  Google Scholar 

  27. R.S. Ellis, K. Haven, B. Turkington, J. Stat. Phys. 101, 999 (2000).

    Article  MATH  Google Scholar 

  28. T. Dauxois, P. Holdsworth, S. Ruffo, Eur. Phys. J. B 16, 659 (2000).

    Article  ADS  Google Scholar 

  29. J. Barré, D. Mukamel, S. Ruffo, Phys. Rev. Lett. 87, 030601 (2001) cond-mat/0209357.

    Article  ADS  Google Scholar 

  30. I. Ispolatov, E.G.D. Cohen, Physica A 295, 475I (2001).

    Article  MATH  ADS  Google Scholar 

  31. M. Kastner, M. Promberger, A. Huller, J. Stat. Phys. 99, 1251 (2000)

    Article  MATH  Google Scholar 

  32. D.H.E. Gross, E.V. Votyakov, Eur. Phys. J. B 15, 115 (2000).

    ADS  Google Scholar 

  33. A. Huller, M. Pleimling, Int. J. Mod. Phys. C 13, 947 (2002).

    Article  ADS  Google Scholar 

  34. M. Pleimling, H. Behringer, A. Huller, Phys. Lett. A 328, 432 (2004)

    Article  ADS  Google Scholar 

  35. Ph. Chomaz, F. Gulminelli, in Lect. Notes Phys., Vol. 602 (Springer, 2002)

  36. P.H. Chavanis, I. Ispolatov, Phys. Rev. E 66, 036109 (2002).

    Article  ADS  Google Scholar 

  37. C.J. Pethick, H. Smith, Bose Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2002).

  38. A. Minguzzi, Phys. Rep. 395, 223 (2004).

    Article  ADS  Google Scholar 

  39. E.V. Shuryak, Phys. Rep. 391, 381 (2004).

    Article  ADS  Google Scholar 

  40. P. Braun-Munzinger, Phys. Lett. B 596, 61 (2004)

    Article  ADS  Google Scholar 

  41. C. Brechignac, Phys. Rev. Lett. 92, 083401 (2004).

    Article  ADS  Google Scholar 

  42. T.D. Lee, C.N. Yang, Phys. Rev. 87, 404 (1952).

    Article  MATH  ADS  Google Scholar 

  43. Ph. Chomaz, F. Gulminelli, V. Duflot, Phys. Rev. E 64, 046114 (2001).

    Article  ADS  Google Scholar 

  44. K.C. Lee, Phys. Rev. E 53, 6558 (1996).

    Article  ADS  Google Scholar 

  45. Ph. Chomaz, F. Gulminelli, Physica A 330, 451 (2003).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. K. Binder, D.P. Landau, Phys. Rev. B 30, 1477 (1984).

    Article  ADS  Google Scholar 

  47. P. Labastie, R.L. Whetten, Phys. Rev. Lett. 65, 1567 (1990).

    Article  ADS  Google Scholar 

  48. F. Gulminelli, Ph. Chomaz, V. Duflot, Europhys. Lett. 50, 434 (2000).

    Article  ADS  Google Scholar 

  49. H. Reinhardt, Nucl. Phys. A 413, 475 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  50. R. Balian, Y. Alhassid, H. Reinhardt, Phys. Rep. 131, 1 (1986).

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Costeniuc, R.S. Ellis, H. Touchette, B. Turkington, Phys. Rev. E 73, 026105 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  52. C. Menotti, P. Pedri, S. Stringari, Phys. Rev. Lett. 89, 252402 (2002).

    Article  Google Scholar 

  53. F. Gulminelli, Ph. Chomaz, Nucl. Phys. A 734, 581 (2004)

    Article  ADS  Google Scholar 

  54. A.S. Botvina, I.N. Mishustin, this topical issue and references therein.

  55. M. Di Toro, A. Olmi, R. Roy, this topical issue and references therein.

  56. B. Tamain, this topical issue and references therein.

  57. J.L. Mc Cauley, Chaos Dynamics and Fractals, Cambridge Nonlinear Science Series 2 (Cambridge University Press, 1993).

  58. R. Balian, M. Vénéroni, Phys. Rev. Lett. 47, 1353

  59. Ph. Chomaz, Ann. Phys. (Paris) 21, 669 (1996).

    ADS  Google Scholar 

  60. L. Van Hove, Physica 15, 951 (1949)

    Article  MATH  ADS  Google Scholar 

  61. P.H. Chavanis, M. Rieutord, Astron. Astrophys. 412, 1 (2003)

    Article  ADS  Google Scholar 

  62. L. Casetti, M. Pettini, E.G.D. Cohen, Phys. Rep. 337, 237 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  63. I. Hidmi, D.H.E. Gross, H.R. Jaqaman, Eur. Phys. J. D 20, 87 (2002).

    Article  ADS  Google Scholar 

  64. T. Dauxois, V. Latora, A. Rapisarda, S. Ruffo, A. Torcini, in Lect. Notes Phys., Vol. 602 (Springer, 2002).

  65. T.L. Beck, R.S. Berry, J. Chem. Phys. 88, 3910 (1988)

    Article  ADS  Google Scholar 

  66. V.A. Antonov, Len. Univ. 7, 135 (1962)

    Google Scholar 

  67. P. Hertel, W. Thirring, Ann. Phys. (N.Y.) 63, 520 (1971).

    Article  ADS  Google Scholar 

  68. P.H. Chavanis, in Lect. Notes Phys. Vol. 602 (Springer, 2002)

  69. T. Padhmanaban, in Lect. Notes Phys., Vol. 602 (Springer, 2002).

  70. J. Katz, Not. R. Astron. Soc. 183, 765 (1978).

    MATH  ADS  Google Scholar 

  71. M. Promberger, A. Huller, Z. Phys. B 97, 341 (1995)

    Article  Google Scholar 

  72. H. Behringer, M. Pleimling, A. Hüller, J. Phys. A 38, 973 (2005)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  73. M. Kastner, M. Promberger, J. Stat. Phys. 53, 795 (1988).

    Article  Google Scholar 

  74. R. Franzosi, M. Pettini, L. Spinelli, Phys. Rev. E 60, 5009 (1999)

    Article  ADS  Google Scholar 

  75. R. Franzosi, M. Pettini, Phys. Rev. Lett. 92, 60601 (2004)

    Article  ADS  Google Scholar 

  76. J. Naudts, Europhys. Lett. 69, 719 (2005) cond-mat/0412683.

    Article  Google Scholar 

  77. M. Antoni, S. Ruffo, A. Torcini, Europhys. Lett. 66, 645 (2004).

    Article  ADS  Google Scholar 

  78. F. Gulminelli, Ph. Chomaz, A.H. Raduta, A.R. Raduta, Phys. Rev. Lett. 91, 202701 (2003).

    Article  ADS  Google Scholar 

  79. T.E. Strezelecka, M.W. Davidson, R.L. Rill, Nature 331, 457 (1988)

    Article  ADS  Google Scholar 

  80. F. Gulminelli, Ph. Chomaz, Phys. Rev. Lett. 82, 1402 (1999).

    Article  ADS  Google Scholar 

  81. Ph. Chomaz, F. Gulminelli, Nucl. Phys. A 647, 153 (1999).

    Article  ADS  Google Scholar 

  82. S. Grossmann, W. Rosenhauer, Z. Phys. 207, 138 (1967)

    Article  Google Scholar 

  83. H. Touchette, Physica A 359, 375 (2005).

    Article  ADS  Google Scholar 

  84. M. Pichon, B. Tamain, R. Bougault, O. Lopez, Nucl. Phys. A 749, 93 (2005).

    Article  Google Scholar 

  85. O. Lopez, Nucl. Phys. A 685, 246 (2001).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gulminelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chomaz, P., Gulminelli, F. The challenges of finite-system statistical mechanics. Eur. Phys. J. A 30, 317–331 (2006). https://doi.org/10.1140/epja/i2006-10126-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epja/i2006-10126-5

PACS.

Navigation