The European Physical Journal Special Topics

, Volume 226, Issue 8, pp 1623–1694 | Cite as

The electron capture in 163Ho experiment – ECHo

  • L. Gastaldo
  • K. Blaum
  • K. Chrysalidis
  • T. Day Goodacre
  • A. Domula
  • M. Door
  • H. Dorrer
  • Ch. E. Düllmann
  • K. Eberhardt
  • S. Eliseev
  • C. Enss
  • A. Faessler
  • P. Filianin
  • A. Fleischmann
  • D. Fonnesu
  • L. Gamer
  • R. Haas
  • C. Hassel
  • D. Hengstler
  • J. Jochum
  • K. Johnston
  • U. Kebschull
  • S. Kempf
  • T. Kieck
  • U. Köster
  • S. Lahiri
  • M. Maiti
  • F. Mantegazzini
  • B. Marsh
  • P. Neroutsos
  • Yu. N. Novikov
  • P. C. O. Ranitzsch
  • S. Rothe
  • A. Rischka
  • A. Saenz
  • O. Sander
  • F. Schneider
  • S. Scholl
  • R. X. Schüssler
  • Ch. Schweiger
  • F. Simkovic
  • T. Stora
  • Z. Szücs
  • A. Türler
  • M. Veinhard
  • M. Weber
  • M. Wegner
  • K. Wendt
  • K. Zuber
Open Access
Regular Article
Part of the following topical collections:
  1. The Electron Capture in 163Ho Experiment – ECHo

Abstract

Neutrinos, and in particular their tiny but non-vanishing masses, can be considered one of the doors towards physics beyond the Standard Model. Precision measurements of the kinematics of weak interactions, in particular of the 3H β-decay and the 163Ho electron capture (EC), represent the only model independent approach to determine the absolute scale of neutrino masses. The electron capture in 163Ho experiment, ECHo, is designed to reach sub-eV sensitivity on the electron neutrino mass by means of the analysis of the calorimetrically measured electron capture spectrum of the nuclide 163Ho. The maximum energy available for this decay, about 2.8 keV, constrains the type of detectors that can be used. Arrays of low temperature metallic magnetic calorimeters (MMCs) are being developed to measure the 163Ho EC spectrum with energy resolution below 3 eV FWHM and with a time resolution below 1 μs. To achieve the sub-eV sensitivity on the electron neutrino mass, together with the detector optimization, the availability of large ultra-pure 163Ho samples, the identification and suppression of background sources as well as the precise parametrization of the 163Ho EC spectrum are of utmost importance. The high-energy resolution 163Ho spectra measured with the first MMC prototypes with ion-implanted 163Ho set the basis for the ECHo experiment. We describe the conceptual design of ECHo and motivate the strategies we have adopted to carry on the present medium scale experiment, ECHo-1K. In this experiment, the use of 1 kBq 163Ho will allow to reach a neutrino mass sensitivity below 10 eV/c2. We then discuss how the results being achieved in ECHo-1k will guide the design of the next stage of the ECHo experiment, ECHo-1M, where a source of the order of 1 MBq 163Ho embedded in large MMCs arrays will allow to reach sub-eV sensitivity on the electron neutrino mass.

References

  1. 1.
    Y. Fukuda et al., Super Kamiokande Collaboration, Phys. Rev. Lett. 81, 1562 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    Q.R. Ahmad et al., (SNO collaboration), Phys. Rev. Lett. 89, 011301 (2002)ADSCrossRefGoogle Scholar
  3. 3.
    G.L. Fogli et al., Phys. Rev. D 84, 053007 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    K.N. Abazajian et al., Astropart. Phys. 35, 177 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    F.T. Avignone III et al., Rev. Mod. Phys. 80, 481 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    F. Simkovic et al., Phys. Rev. C 77, 045503 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    S. Eliseev et al., J. Phys. G: Nucl. Part. Phys. 39, 124003 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    G. Pagliaroli et al., Astropart. Phys. 33, 287 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    G. Drexlin et al., Adv. High Ener. Phys. 2013, 293986 (2013)Google Scholar
  10. 10.
    KATRIN Design Report, FZKA7090 (2004)Google Scholar
  11. 11.
    Ch. Kraus et al., Eur. Phys. J. C 40, 447 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Ch. Weinheimer, Prog. Part. Nucl. Phys. 57, 22 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    N. Aseev et al., Phys. Rev D 84, 112003 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    D.M. Asner et al., Phys. Rev. Lett. 114, 162501 (2015)ADSCrossRefGoogle Scholar
  15. 15.
    S. Betts et al., arXiv:1307.4738[astro-ph.IM]
  16. 16.
    P.T. Springer et al., Phys. Rev. A 35, 679 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    C.W. Reich, B. Singh, Nuclear Data Sheets 111, 1211 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    P.A. Baisden et al., Phys. Rev. C 28, 337 (1983)ADSCrossRefGoogle Scholar
  19. 19.
    G. Audi et al., The Ame2012 atomic mass evaluation, Chinese Phys. C 36, 1157 (2012)CrossRefGoogle Scholar
  20. 20.
    J.U. Andersen et al., Phys. Lett. B 113, 72 (1982)ADSCrossRefGoogle Scholar
  21. 21.
    F. Gatti et al., Phys. Lett. B 398, 415 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    P.C.-O. Ranitzsch et al., J. Low Temp. Phys. 167, 1004 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    S. Eliseev et al., Phys. Rev. Lett. 115, 062501 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    A. Faessler et al., Phys. Rev. C 91, 064302 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    C.L. Bennett et al., Phys. Lett. B 107, 19 (1981)ADSCrossRefGoogle Scholar
  26. 26.
    S. Yasumi et al., Phys. Lett. B 122, 461 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    S. Yasumi et al., Phys. Lett. B 334, 229 (1994)ADSCrossRefGoogle Scholar
  28. 28.
    A. De Rujula, M. Lusignoli, Phys. Lett. B 118, 429 (1982)ADSCrossRefGoogle Scholar
  29. 29.
    A. De Rujula, arXiv:1305.4857 (2013)
  30. 30.
    E. Laegsgaard et al., Proceeding of 7th International Conference on Atomic Masses and Fundamental Constants (AMCO-7) (1984)Google Scholar
  31. 31.
    F.X. Hartmann, R.A. Naumann, Nucl. Instr. Meth. A 13, 237 (1992)ADSCrossRefGoogle Scholar
  32. 32.
    L. Gastaldo et al., Nucl. Inst. and Meth. A 711, 150 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    L. Gastaldo et al., J. Low Temp. Phys. 176, 876 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    B. Alpert et al., Eur. Phys. J. C 75, 112 (2015)ADSCrossRefGoogle Scholar
  35. 35.
  36. 36.
    M.P. Croce et al., J. Low Temp. Phys. 184, 938 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    R.G.H. Robertson, Phys. Rev. C 91, 035504 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    A. Faessler, F. Simkovic, Phys. Rev. C 91, 045505 (2015)ADSCrossRefGoogle Scholar
  39. 39.
    A. De Rujula, M. Lusignoli, arXiv:1510.05462 (2015)
  40. 40.
    A. De Rujula, M. Lusignoli, arXiv:1601.04990 (2016)
  41. 41.
    A. Faessler et al., J. Phys. G 42, 015108 (2015)ADSCrossRefGoogle Scholar
  42. 42.
    R.D. Deslattes et al., Rev. Mod. Phys. 75, 35 (2003)ADSCrossRefGoogle Scholar
  43. 43.
    A. Thompson et al., X-ray data booklet (2009), xdb.lbl.govGoogle Scholar
  44. 44.
    J. Campbell, T. Papp, At. Data Nucl. Data Tables 77, 1 (2001)ADSCrossRefGoogle Scholar
  45. 45.
    R.L. Cohen et al., Phys. Rev. B 5, 1037 (1972)ADSCrossRefGoogle Scholar
  46. 46.
    M. Lusignoli, M. Vignati, Phys. Lett. B 697, 11 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    A. Fleischmann et al., in Cryogenic Particle Detection (Springer Topics in Applied Physics 99) ed EnssC (Berlin: Springer) (2005), p. 151Google Scholar
  48. 48.
    A. Fleischmann et al., AIP Conf. Proc. 1185, 571 (2009)ADSCrossRefGoogle Scholar
  49. 49.
    C. Pies et al., J. Low Temp. Phys. 167, 269 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    J.A.B. Mates et al., Appl. Phys. Lett. 92, 023514 (2008)ADSCrossRefGoogle Scholar
  51. 51.
    A. Fleischmann et al., in preparationGoogle Scholar
  52. 52.
    C. Enss, in Cryogenic Particle Detection, Top. Appl. Phys. (2005), Vol. 99 Google Scholar
  53. 53.
    A. Enss, D. Mac Cammon, J. Low Temp. Phys. 151, 5 (2008)ADSCrossRefGoogle Scholar
  54. 54.
    K.D. Irwin, G.C. Hilton, Top. Appl. Phys. 99, 63 (2005)Google Scholar
  55. 55.
    J.-P. Porst et al., J. Low Temp. Phys. 176, 617 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    J.-P. Porst et al., Nucl. Phys. B (Proc. Suppl.) 229-232, 446 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    L. Gastaldo et al., AIP Conf. Proc. 1185, 607 (2009)ADSCrossRefGoogle Scholar
  58. 58.
    A. Fleischmann et al., J. Low Temp. Phys. 118, 7 (2000)ADSCrossRefGoogle Scholar
  59. 59.
    G. Hölzer et al., Phys. Rev. A 56, 4554 (1997)ADSCrossRefGoogle Scholar
  60. 60.
    E. Kugler, Hyperfine Interact. 129, 23 (2000)ADSCrossRefGoogle Scholar
  61. 61.
    A.G. Kozorezov et al., Phys. Rev. B 87, 104504 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    P.C.-O. Ranitzsch, arXiv:1409.0071[physics.ins-det] (2014)
  63. 63.
    D. Drung et al., IEEE Trans. Appl. Supercond. 17, 699 (2007)ADSCrossRefGoogle Scholar
  64. 64.
    C. Hassel et al., J. Low Temp. Phys. 184, 910 (2016)ADSCrossRefGoogle Scholar
  65. 65.
    K. Prasai et al., Rev. Sci. Instr. 84, 083905 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    I.M. Band, M.B. Trzhaskovskaya, Atomic Data and Nuclear Data Tables 35, 1 (1986)ADSCrossRefGoogle Scholar
  67. 67.
    J. Clarke, A.I. Braginski, eds., in The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems (Wiley-VCH, Weinheim, 2004)Google Scholar
  68. 68.
    S. Kempf et al., Supercond. Sci. Technol. 28, 045008 (215)Google Scholar
  69. 69.
    D. Drung, M. Mück, SQUID electronics in The SQUID Handbook: Fundamentals and Technology of SQUIDs and SQUID Systems, edited by J. Clarke and A.I. Braginski (Wiley-VCH, Weinheim, 2004)Google Scholar
  70. 70.
    S.R. Bandler et al., J. Low Temp. Phys. 167, 254 (2012)ADSCrossRefGoogle Scholar
  71. 71.
    J. Beyer, D. Drung, Supercond. Sci. Technol. 21, 105022 (2008)ADSCrossRefGoogle Scholar
  72. 72.
    J.-P. Porst et al., IEEE Trans. Appl. Supercond. 23, 2500905 (2013)CrossRefGoogle Scholar
  73. 73.
    K.D. Irwin, K.W. Lehnert, Appl. Phys. Lett. 85, 2107 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    K.W. Lehnert et al., IEEE Trans. Appl. Supercond. 17, 705 (2007)ADSCrossRefGoogle Scholar
  75. 75.
    J.M. Goodkind, D.L. Stolfa, Rev. Sci. Instrum. 41, 799 (1970)ADSCrossRefGoogle Scholar
  76. 76.
    P.K. Hansma, J. Appl. Phys. 44, 4191 (1973)ADSCrossRefGoogle Scholar
  77. 77.
    R. Rifkin et al., J. Appl. Phys. 47, 2645 (1976)ADSCrossRefGoogle Scholar
  78. 78.
    S. Kempf et al., J. Low Temp. Phys. 175, 850 (2014)ADSCrossRefGoogle Scholar
  79. 79.
    J.A.B. Mates et al., J. Low Temp. Phys. 167, 707 (2012)ADSCrossRefGoogle Scholar
  80. 80.
    B.A. Mazin et al., Nucl. Instr. Meth. A 559, 799 (2006)ADSCrossRefGoogle Scholar
  81. 81.
    S.J.C. Yates et al., Appl. Phys. Lett. 95, 042504 (2009)ADSCrossRefGoogle Scholar
  82. 82.
    R. Duan et al., Proc. of SPIE 7741, 77411 (2010)CrossRefGoogle Scholar
  83. 83.
    S. Kempf et al., J. Low Temp. Phys. 176, 426 (2014)ADSCrossRefGoogle Scholar
  84. 84.
    S. Kempf et al., AIP Advances 7, 015007 (2017)ADSCrossRefGoogle Scholar
  85. 85.
    C. Bueno, Radiographic Testing, in Nondestructive testing handbook, 3rd edn (The American Society for Nondestructive Testing, Columbus, OH, USA, 2002), Vol. 4 Google Scholar
  86. 86.
    D. Rowe, Appl. Energ. 40, 241 (1991)CrossRefGoogle Scholar
  87. 87.
    J. Runke et al., J. Radioanal. Nucl. Chem. 299, 1081 (2014)CrossRefGoogle Scholar
  88. 88.
    J. Magill et al., Karlsruher Nuklidkarte, 8th edn. (Nucleonica GmbH, 76344 Eggenstein-Leopoldshafen, Germany, 2012)Google Scholar
  89. 89.
    J.W. Engle et al., Nucl. Instrum. Meth. B 311, 131 (2013)ADSCrossRefGoogle Scholar
  90. 90.
    S. Niese et al., J. Radioanal. Nucl. Chem. 233, 167 (1998)CrossRefGoogle Scholar
  91. 91.
    G. Heusser. Annu. Rev. Nucl. Part. Sci. 45, 543 (1995)ADSCrossRefGoogle Scholar
  92. 92.
    J. Korkisch. CRC Handbook of Ion Exchange Resins, Vol. I-V (CRC Press, Boca Raton, FL, USA, 1988)Google Scholar
  93. 93.
    V. Mocko et al., Radiochim. Acta 103, 577 (2015)CrossRefGoogle Scholar
  94. 94.
    H.L. Ravn et al., AIP Conf. Proc. 99, 1 (1983)ADSCrossRefGoogle Scholar
  95. 95.
    M. Fujioka et al., CYRIC Ann. Rep. 1981, 25 (1981)Google Scholar
  96. 96.
    M. Blann, H.K. Vonach, Phys. Rev. C 28, 1475 (1983)ADSCrossRefGoogle Scholar
  97. 97.
    K. Katsube et al., CYRIC Ann. Rep. 1982, 28 (1982)Google Scholar
  98. 98.
    F. Tárkányi et al., Appl. Radiat. Isot. 98, 87 (2015)CrossRefGoogle Scholar
  99. 99.
    O. Kawakami et al., Phys. Rev. C 38, 1857 (1988)ADSCrossRefGoogle Scholar
  100. 100.
    A. Koning et al., TALYS-1.0 (EDP Sciences, 2007), p. 58Google Scholar
  101. 101.
    Z. Szucs et al., in Proceedings of the third international conference on application of radiotracers and energetic beams in sciences: extended abstracts of the plenary lectures and contributed papers (2014)Google Scholar
  102. 102.
    M. Maiti et al., in International Conference on Modern Trends in Activation Analysis 14 (MTAA 14) (2015)Google Scholar
  103. 103.
    M. Maiti et al., J. Radioanal. Nucl. Chem. 307, 1667 (2016)CrossRefGoogle Scholar
  104. 104.
    S. Lahiri et al., Appl. Radiat. Isot. 51, 27 (1999)CrossRefGoogle Scholar
  105. 105.
    S. Lahiri et al., Appl. Radiat. Isot. 61, 1157 (2004)CrossRefGoogle Scholar
  106. 106.
    R.A. Naumann et al., J. Inorg. Nucl. Chem. 15, 195 (1960)CrossRefGoogle Scholar
  107. 107.
    N. Holden, Neutron Scattering and Absorption Properties, in CRC Handbook of Chemistry and Physics, cd-rom edn. (CRC Press, Boca Raton, FL, USA, 2006), p. 11Google Scholar
  108. 108.
    U. Köster et al., Radiother. Oncol. 102, S102 (2012)CrossRefGoogle Scholar
  109. 109.
    P. Armbruster et al., Phys. Rev. Lett. 54, 406 (1985)ADSCrossRefGoogle Scholar
  110. 110.
    N. Trautmann, H. Folger, Nucl. Instrum. Meth. A 282, 102 (1989)ADSCrossRefGoogle Scholar
  111. 111.
    K. Eberhardt et al., Nucl. Instrum. Meth. A 521, 208 (2004)ADSCrossRefGoogle Scholar
  112. 112.
    K. Zimmer. Ph.D. thesis, Johannes Gutenberg-Universität Mainz, 1995Google Scholar
  113. 113.
    F. Schneider et al., Nucl. Instrum. Meth. B 376, 388 (2016)ADSCrossRefGoogle Scholar
  114. 114.
    H. Dorrer et al., to be submitted in Radiochim. ActaGoogle Scholar
  115. 115.
    L. Monz et al., Spectrochim. Acta B 48, 1655 (1993)ADSCrossRefGoogle Scholar
  116. 116.
    K. Wendt. Eur. J. Mass Spectrom. 8, 273 (2002)CrossRefGoogle Scholar
  117. 117.
    T. Gottwald et al., AIP Conf. Proc. 1104, 138 (2009)ADSCrossRefGoogle Scholar
  118. 118.
    T. Kieck et al., to be submitted to NIM BGoogle Scholar
  119. 119.
    D. Liebe et al., Nucl. Instrum. Meth. A 590, 145 (2008)ADSCrossRefGoogle Scholar
  120. 120.
    F. Schneider et al., Eur. Phys. J. A 51, 89 (2015)ADSCrossRefGoogle Scholar
  121. 121.
    J. Repp et al., Appl. Phys. B 107, 983 (2012)ADSCrossRefGoogle Scholar
  122. 122.
    C. Sailer, Diploma thesis, Physikalisches Institut der Eberhard Karls Universität Tübingen, 2008Google Scholar
  123. 123.
    M. Köhler et al., Appl. Rad. Isot. 67, 736 (2009)CrossRefGoogle Scholar
  124. 124.
    S. Agostinelli et al., Nucl. Instr. Meth. A 506, 250 (2003)ADSCrossRefGoogle Scholar
  125. 125.
    J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006)ADSCrossRefGoogle Scholar
  126. 126.
    D.S. Leonard et al. (EXO-Collaboration), Nucl. Inst. Meth. A 591, 490 (2008)ADSCrossRefGoogle Scholar
  127. 127.
    International Commission on Radiation Units and Measurements, Stopping Powers for Electrons and Positrons, ICRU Report 37 (1984)Google Scholar
  128. 128.
  129. 129.
    C.M. Baglin, Nuclear Data Sheets for A = 166, Nucl. Data Sheets 109, 1103 (2008)ADSCrossRefGoogle Scholar
  130. 130.
    S.Y.F. Chu, L.P. Ekström, R.B. Firestone, The Lund/LBNL Nuclear Data Search, Version 2.0, Feb. 1999, http://nucleardata.nuclear.lu.se/toi/xray.asp
  131. 131.
    K. Blaum, Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  132. 132.
    K. Blaum et al., Phys. Scr. T152, 014017 (2013)ADSCrossRefGoogle Scholar
  133. 133.
    L.S. Brown, G. Gabrielse, Rev. Mod. Phys. 58, 233 (1986)ADSCrossRefGoogle Scholar
  134. 134.
    L.S. Brown, G. Gabrielse, Phys. Rev. A 25, 2423 (1982)ADSCrossRefGoogle Scholar
  135. 135.
    M. König et al., Int. J. Mass Spectrom. 142, 95 (1995)ADSCrossRefGoogle Scholar
  136. 136.
    K. Blaum et al., Eur. Phys. J. A 15, 245 (2002)ADSCrossRefGoogle Scholar
  137. 137.
    H. Dehmelt, F. Walls, Phys. Rev. Lett. 21, 127 (1968)ADSCrossRefGoogle Scholar
  138. 138.
    M. Kretzschmar, Int. J. Mass Spectrom. 264, 122 (2007)ADSCrossRefGoogle Scholar
  139. 139.
    S. George et al., Phys. Rev. Lett. 98, 162501 (2007)ADSCrossRefGoogle Scholar
  140. 140.
    S. George et al., Int. J. Mass Spectrom. 264, 110 (2007)ADSCrossRefGoogle Scholar
  141. 141.
    S. Eliseev et al., Phys. Rev. Lett. 110, 082501 (2013)ADSCrossRefGoogle Scholar
  142. 142.
    S. Eliseev et al., Appl. Phys. B 114, 107 (2014)ADSCrossRefGoogle Scholar
  143. 143.
    M. Block et al., Eur. Phys. J. D 45, 39 (2007)ADSCrossRefGoogle Scholar
  144. 144.
    W. Shi et al., Phys. Rev. A 72, 022510 (2005)ADSCrossRefGoogle Scholar
  145. 145.
    S. Streubel et al., Appl. Phys. B 114, 137 (2014)ADSCrossRefGoogle Scholar
  146. 146.
    S. Sturm et al., Nature 506, 467 (2014)ADSCrossRefGoogle Scholar
  147. 147.
    F. Hartmann, R. Naumann Phys. Rev. C 31, 1594 (1985)ADSCrossRefGoogle Scholar
  148. 148.
    S. Yasumi et al., Phys. Lett. B 181, 169 (1986)ADSCrossRefGoogle Scholar
  149. 149.
    F. Bosch, M. Jung, GSI Annual Rep. 65, 1993Google Scholar
  150. 150.
    J. Ketelaer et al., Nucl. Instr. Meth. A 594, 162 (2008)ADSCrossRefGoogle Scholar
  151. 151.
    A. Chaudhuri et al., Eur. Phys. J. D 45, 47 (2007)ADSCrossRefGoogle Scholar
  152. 152.
    G. Savard et al., Phys. Lett. A 158, 247 (1991)ADSCrossRefGoogle Scholar
  153. 153.
    K. Blaum et al., J. Phys. B 36, 921 (2003)ADSCrossRefGoogle Scholar
  154. 154.
    C. Roux et al., Appl. Phys. B 107, 997 (2012)ADSCrossRefGoogle Scholar
  155. 155.
    Th. A. Carlson et al., Phys. Rev. 169, 27 (1968)ADSCrossRefGoogle Scholar
  156. 156.
    Th. A. Carlson, C. W. Nestor, Phys. Rev. A 8, 2887 (1973)ADSCrossRefGoogle Scholar
  157. 157.
    I. P. Grant, Adv. Phys. 19, 747 (1970)ADSCrossRefGoogle Scholar
  158. 158.
    J. P. Desclaux, Comp. Phys. Com. 9, 31 (1975)ADSCrossRefGoogle Scholar
  159. 159.
    A.L. Ankudinov et al., Comp. Phys. Com. 98, 359 (1996)ADSCrossRefGoogle Scholar
  160. 160.
    P.-O. Loewdin Phys. Rev. Lett. 97, 1474 (1955)ADSGoogle Scholar
  161. 161.
    E. Vatai, Nucl. Phys. A156, 541 (1970)ADSCrossRefGoogle Scholar
  162. 162.
    E. Vatai, Nucl. Phys. A402, 1 (1983)ADSCrossRefGoogle Scholar
  163. 163.
    K. Blaum K et al., Contem. Phys. 51, 149 (2010)ADSCrossRefGoogle Scholar
  164. 164.
  165. 165.
    J.R. Crespo Lopez-Urrutia et al., Hyperfine Interact. 127, 497 (2000)ADSCrossRefGoogle Scholar
  166. 166.
    S. Sturm et al., Phys. Rev. Lett. 107, 143003 (2011)ADSCrossRefGoogle Scholar
  167. 167.
    K.N. Abazajian et al., arXiv:1204.5379 [hep-ph] (2012)
  168. 168.
    S. Gariazzo et al., J. Phys. G 43, 033001 (2016)ADSCrossRefGoogle Scholar
  169. 169.
    R. Adhikari et al., JCAP 01, 025 (2017)ADSCrossRefGoogle Scholar
  170. 170.
    L. Gastaldo et al., JHEP 06, 061 (2016)ADSCrossRefGoogle Scholar
  171. 171.
    C. Giunti et al., Phys. Rev. D 86, 113014 (2012)ADSCrossRefGoogle Scholar
  172. 172.
    C. Giunti et al., Phys. Rev. D 87, 013004 (2013)ADSCrossRefGoogle Scholar
  173. 173.
    C. Kraus et al., Eur. Phys. J. C 73, 2323 (2013)ADSCrossRefGoogle Scholar
  174. 174.
    A.I. Belesev et al., JETP Lett. 97, 67 (2013)ADSCrossRefGoogle Scholar
  175. 175.
    A.I. Belesev et al., J. Phys. G 41, 015001 (2014)ADSCrossRefGoogle Scholar
  176. 176.
    A. Esmaili, O. Peres, Phys. Rev. D 85, 117301 (2012)ADSCrossRefGoogle Scholar
  177. 177.
    P.E. Filianin et al., J. Phys. G 41, 095004 (2014)ADSCrossRefGoogle Scholar
  178. 178.
    L. Fleischmann et al., IEEE Trans. Appl. Supercond. 19, 63 (2009)ADSCrossRefGoogle Scholar
  179. 179.
    P. Filianin et al., Phys. Lett. B 758, 457 (2016)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • L. Gastaldo
    • 1
  • K. Blaum
    • 2
  • K. Chrysalidis
    • 3
  • T. Day Goodacre
    • 4
  • A. Domula
    • 5
  • M. Door
    • 2
  • H. Dorrer
    • 6
    • 7
    • 8
  • Ch. E. Düllmann
    • 6
    • 9
    • 10
  • K. Eberhardt
    • 6
    • 10
  • S. Eliseev
    • 2
  • C. Enss
    • 1
  • A. Faessler
    • 11
  • P. Filianin
    • 2
  • A. Fleischmann
    • 1
  • D. Fonnesu
    • 1
  • L. Gamer
    • 1
  • R. Haas
    • 6
  • C. Hassel
    • 1
  • D. Hengstler
    • 1
  • J. Jochum
    • 12
  • K. Johnston
    • 4
  • U. Kebschull
    • 13
  • S. Kempf
    • 1
  • T. Kieck
    • 3
    • 6
  • U. Köster
    • 14
  • S. Lahiri
    • 15
  • M. Maiti
    • 16
  • F. Mantegazzini
    • 1
  • B. Marsh
    • 4
  • P. Neroutsos
    • 13
  • Yu. N. Novikov
    • 2
    • 17
    • 18
  • P. C. O. Ranitzsch
    • 1
  • S. Rothe
    • 4
  • A. Rischka
    • 2
  • A. Saenz
    • 19
  • O. Sander
    • 20
  • F. Schneider
    • 3
    • 6
  • S. Scholl
    • 12
  • R. X. Schüssler
    • 2
  • Ch. Schweiger
    • 2
  • F. Simkovic
    • 21
  • T. Stora
    • 4
  • Z. Szücs
    • 22
  • A. Türler
    • 7
    • 8
  • M. Veinhard
    • 4
  • M. Weber
    • 20
  • M. Wegner
    • 1
  • K. Wendt
    • 3
  • K. Zuber
    • 5
  1. 1.Kirchhoff Institute for Physics, Heidelberg UniversityHeidelbergGermany
  2. 2.Max-Planck Institute for Nuclear PhysicsHeidelbergGermany
  3. 3.Institute for Physics, Johannes Gutenberg-UniversityMainzGermany
  4. 4.ISOLDE, CERNGeneveSwitzerland
  5. 5.Institute for Nuclear and Particle PhysicsTU DresdenGermany
  6. 6.Institute for Nuclear Chemistry, Johannes Gutenberg UniversityMainzGermany
  7. 7.Laboratory of Radiochemistry and Environmental Chemistry, Department Biology and Chemistry, Paul Scherrer InstituteVilligen PSISwitzerland
  8. 8.Laboratory of Radiochemistry and Environmental Chemistry, Department of Chemistry and Biochemistry, University of BernBernSwitzerland
  9. 9.GSI Helmholtzzentrum für SchwerionenforschungDarmstadtGermany
  10. 10.Helmholtz Institute MainzMainzGermany
  11. 11.Institute for Theoretical Physics, University of TübingenTübingenGermany
  12. 12.Physics Institute, University ofTübingenGermany
  13. 13.Goethe-UniversitätFrankfurt am MainGermany
  14. 14.Institut Laue-LangevinGrenobleFrance
  15. 15.Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF BidhannagarKolkataIndia
  16. 16.Department of PhysicsIndian Institute of Technology RoorkeeRoorkeeIndia
  17. 17.Petersburg Nuclear Physics InstituteGatchinaRussia
  18. 18.St.Petersburg State UniversitySt. PetersburgRussia
  19. 19.Institut für Physik, Humboldt-Universität zu BerlinBerlinGermany
  20. 20.Karlsruhe Institute of Technology, Institute for Data Processing and ElectronicsKarlsruheGermany
  21. 21.Department of Nuclear Physics and BiophysicsComenius UniversityBratislavaSlovakia
  22. 22.Institute of Nuclear Research of the H.A.S., Bem ter 18/CDebrecenHungary

Personalised recommendations