The European Physical Journal Special Topics

, Volume 226, Issue 9, pp 2031–2038 | Cite as

On the importance of the convergence to climate attractors

  • Gábor Drótos
  • Tamás Bódai
  • Tamás Tél
Regular Article
Part of the following topical collections:
  1. Recent Advances in Nonlinear Dynamics and Complex Structures: Fundamentals and Applications


Ensemble approaches are becoming widely used in climate research. In contrast to weather forecast, however, in the climatic context one is interested in long-time properties, those arising on the scale of several decades. The well-known strong internal variability of the climate system implies the existence of a related dynamical attractor with chaotic properties. Under the condition of climate change this should be a snapshot attractor, naturally arising in an ensemble-based framework. Although ensemble averages can be evaluated at any instant of time, results obtained during the process of convergence of the ensemble towards the attractor are not relevant from the point of view of climate. In simulations, therefore, attention should be paid to whether the convergence to the attractor has taken place. We point out that this convergence is of exponential character, therefore, in a finite amount of time after initialization relevant results can be obtained. The role of the time scale separation due to the presence of the deep ocean is discussed from the point of view of ensemble simulations.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Ghil, M.D. Chekroun, E. Simonnet, Physica D 237, 2111 (2008)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    T. Bódai, G. Károlyi, T. Tél, Phys. Rev. E 83, 046201 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    T. Bódai, T. Tél, Chaos 22, 023110 (2012)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    J.D. Daron, D.A. Stainforth, Chaos 25, 043103 (2015)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    S. Pierini, M. Ghil, M.D. Chekroun, J. Clim. 29, 4185 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    H. Goosse, H. Renssen, A. Timmermann, R.S. Bradley, Quat. Sci. Rev. 24, 1345 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    C. Deser, R. Knutti, S. Solomon, A.S. Phillips, Nat. Clim. Change 2, 775 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    C. Deser, A. Phillips, V. Bourdette, H. Teng, Clim. Dyn. 38, 527 (2012)CrossRefGoogle Scholar
  9. 9.
    W.M. Kim, G. Danabasoglu, S. Yeager, in CESM Workshop, Jun. 16, The Village at Breckenridge, Breckenridge, CO, USA, 2015 (National Center for Atmospheric Research)Google Scholar
  10. 10.
    J.E. Kay et al. Bull. Am. Meteorol. Soc. 96, 1333 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    F. Ragone, V. Lucarini, F. Lunkeit, Clim. Dyn. 46, 1459 (2016)CrossRefGoogle Scholar
  12. 12.
    V. Lucarini, F. Lunkeit, F. Ragone, J. Stat. Phys. 166, 1036 (2017)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    E. Kalnay, Atmospheric Modeling, Data Assimilation, and Predictability (Cambridge University Press, Cambridge, UK, 2003)Google Scholar
  14. 14.
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, Cambridge, UK, 1993)Google Scholar
  15. 15.
    F.J. Romeiras, C. Grebogi, E. Ott, Phys. Rev. A 41, 784 (1990)ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    M.D. Chekroun, E. Simonnet, M. Ghil, Physica D 240, 1685 (2011)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    M. Vincze, Modeling Climate Change in the Laboratory, in Teaching Physics Innovatively, edited by A. Király, T. Tél (PhD School of Physics, Eötvös University, Budapest, 2016), pp. 107–118Google Scholar
  18. 18.
    M. Vincze, I.D. Borcia, U. Harlander, Sci. Rep. 7, 254 (2017)ADSCrossRefGoogle Scholar
  19. 19.
    G. Drótos, T. Bódai, T. Tél, J. Clim. 28, 3275 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    M. Herein, J. Márfy, G. Drótos, T. Tél, J. Clim. 29, 259 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    P. Gaspard, Chaos, Scattering and Statistical Mechanics (Cambridge University Press, Cambridge, UK, 1998)Google Scholar
  22. 22.
    P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, G. Vattay, Chaos: Classical and Quantum, (Niels Bohr Institute, Copenhagen, Denmark, 2016)
  23. 23.
    M. Herein, G. Drótos, T. Haszpra, J. Márfy, T. Tél, Sci. Rep. 7, 44529 (2017)ADSCrossRefGoogle Scholar
  24. 24.
    K. Fraedrich, H. Jansen, E. Kirk, U. Luksch, F. Lunkeit, Meteorol. Z. 14, 299 (2005)CrossRefGoogle Scholar
  25. 25.
  26. 26.
    C. Kuehn, Multiple Time Scale Dynamics (Springer, 2015)Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute for Theoretical Physics, MTA-ELTE Theoretical Physics Research Group, Eötvös UniversityBudapestHungary
  2. 2.Instituto de Fisica Interdisciplinar y Sistemas Complejos (UIB-CSIC), Carretera de ValldemossaPalma de MallorcaSpain
  3. 3.Centre for the Mathematics of Planet Earth, Department of Mathematics and Statistics, University of ReadingReadingUK

Personalised recommendations