Advertisement

A first-principles study of pristine and Al-doped activated carbon interacting with 5-Fluorouracil anticancer drug

  • G. Román
  • E. Noseda Grau
  • A. Díaz Compañy
  • G. Brizuela
  • A. Juan
  • S. Simonetti
Regular Article

Abstract.

The adsorption of the 5-Fluorouracil (5-FU) molecule on the pristine and Al-doped activated carbon (AC) was investigated by using the Vienna Ab-initio Simulation Package. It is found that the 5-FU molecule is only weakly adsorbed on the pristine AC with high adsorption energy and large surface distance. The adsorption of the 5-FU molecule on pristine AC is highly disfavored. In contrast, the molecule shows strong interactions with the Al-doped AC confirmed by the lesser adsorption energy, the charge transfers on the Al-modified zone and the significant changes in the DOS at the Fermi level. The results of our study suggest that the Al dopant increases the adsorption capacity of AC enhancing its interactions with polar atoms of the adsorbate, hence improving its adsorption properties.

Graphical abstract

Keywords

Soft Matter: Interfacial Phenomena and Nanostructured Surfaces 

References

  1. 1.
    T.A. Rich, R.C. Shepard, S.T. Mosley, J. Clin. Oncol. 22, 2214 (2004)CrossRefGoogle Scholar
  2. 2.
    X. Wang, J. Lin, X. Zhang, Q. Liu, Q. Xu, R.-X. Tan, Z. Guo, J. Inorg. Biochem. 94, 186 (2003)CrossRefGoogle Scholar
  3. 3.
    F.H. Lin, Y.H. Lee, C.H. Jian, J.-M. Wong, M.-J. Shieh, C.-Y. Wang, Biomaterials 23, 1981 (2002)CrossRefGoogle Scholar
  4. 4.
    J.L. Arias, Molecules 13, 2340 (2008)CrossRefGoogle Scholar
  5. 5.
    Y. Zhu, T. Ikoma, N. Hanagata, S. Kaskel, Small 6, 471 (2010)CrossRefGoogle Scholar
  6. 6.
    R.C. Bansal, J.B. Donnet, F. Stoeckli, Active Carbon (Dekker, New York, 1988)Google Scholar
  7. 7.
    Y. Zhong, Z. Junxian, L. Peifeng, Z. Yingge, J. Sci. Conf. Proc. 1, 190 (2009)  https://doi.org/10.1166/jcp.2009.1056 CrossRefGoogle Scholar
  8. 8.
    M.K. Hazrati, N.L. Hadipour, Phys. Lett. A 380, 937 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    A. Soltani, M.T. Baei, E.T. Lemeski, S. Kaveh, H. Balakheyli, J. Phys. Chem. Solids 86, 57 (2015)ADSCrossRefGoogle Scholar
  10. 10.
    M.K. Hazrati, Z. Javanshir, Z. Bagheri, J. Mol. Graph. Model. 77, 17 (2017)CrossRefGoogle Scholar
  11. 11.
  12. 12.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993)ADSCrossRefGoogle Scholar
  13. 13.
    S. Grimme, J. Comput. Chem. 27, 1787 (2006)CrossRefGoogle Scholar
  14. 14.
    G. Kresse, J. Hafner, Phys. Rev. B 48, 13115 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)ADSCrossRefGoogle Scholar
  17. 17.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 48, 4978 (1993)ADSCrossRefGoogle Scholar
  18. 18.
    P. Bloch, Phys. Rev. B 50, 17953 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    N. Chen, R.T. Yang, Carbon 36, 1061 (1998)CrossRefGoogle Scholar
  23. 23.
    N. Chen, R.T. Yang, J. Chem. Phys. A 102, 6348 (1998)ADSCrossRefGoogle Scholar
  24. 24.
    D. Lamoen, B.N.J. Persson, J. Chem. Phys. 108, 3332 (1998)ADSCrossRefGoogle Scholar
  25. 25.
    Z.H. Zhu, G.Q. Lu, Langmuir 20, 10751 (2004)CrossRefGoogle Scholar
  26. 26.
    C. Janiak, R.R. Hoffmann, P. Sjovall, B. Kasemo, Langmuir 9, 3427 (1993)CrossRefGoogle Scholar
  27. 27.
    J.R. Pliego, S.M. Resende, E. Humeres, J. Chem. Phys. 314, 127 (2005)Google Scholar
  28. 28.
    K.T. Thomson, K.E. Gubbins, Langmuir 16, 5761 (2000)CrossRefGoogle Scholar
  29. 29.
    A.P. Terzyk, S. Furmaniak, P.A. Gauden, P.J.F. Harris, J. Włoch, P. Kowalczyk, J. Phys.: Condens. Matter. 19, 406208 (2007)Google Scholar
  30. 30.
    J.M. Hernández, E.C. Anota, M.T. de la Cruz, M.G. Melchor, G.H. Cocoletzi, J. Mol. Model. 18, 3857 (2012)CrossRefGoogle Scholar
  31. 31.
    Z.M. Ao, J. Yang, S. Li, Q. Jiang, Chem. Phys. Lett. 461, 276 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    R. Wang, D. Zhang, W. Sun, Z. Han, C. Liu, J. Mol. Struct. (THEOCHEM) 806, 93 (2007)CrossRefGoogle Scholar
  33. 33.

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • G. Román
    • 1
  • E. Noseda Grau
    • 1
    • 2
  • A. Díaz Compañy
    • 1
    • 2
  • G. Brizuela
    • 1
  • A. Juan
    • 1
  • S. Simonetti
    • 1
    • 3
  1. 1.Instituto de Física del Sur (IFISUR), Departamento de FísicaUniversidad Nacional del Sur (UNS), CONICETBahía BlancaArgentina
  2. 2.Comisión de Investigaciones Científicas (CIC)La PlataArgentina
  3. 3.Universidad Tecnológica Nacional (UTN)Bahía BlancaArgentina

Personalised recommendations