Skip to main content
Log in

Studies on electrostatic interactions within model nano-confined aqueous environments of different chemical nature

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

We study the potential of mean force for pairs of parallel flat surfaces with attractive electrostatic interactions by employing model systems functionalized with different charged, hydrophobic and hydrophilic groups. We study the way in which the local environment (hydrophobic or hydrophilic moieties) modulates the interaction between the attractive charged groups on the plates by removing or attracting nearby water and thus screening or not the electrostatic interaction. To explicitly account for the role of the solvent and the local hydrophobicity, we also perform studies in vacuo. Additionally, the results are compared to that for non-charged plates in order to single out and rationalize the non-additivity of the different non-covalent interactions. Our simulations demonstrate that the presence of neighboring hydrophobic groups promote water removal in the vicinity of the charged groups, thus enhancing charge attraction upon self-assembly. This role of the local hydrophobicity modulating electrostatic interactions is consistent with recent qualitative descriptions in the protein binding context.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chandler, Nature 437, 640 (2005)

    Article  ADS  Google Scholar 

  2. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001)

    Article  ADS  Google Scholar 

  3. S. Vaitheeswaran, H. Yin, J.C. Rasaiah, G. Hummer, Proc. Natl. Acad. Sci. U.S.A. 101, 17002 (2004)

    Article  ADS  Google Scholar 

  4. J.C. Rasaiah, S. Garde, G. Hummer, Annu. Rev. Phys. Chem. 59, 713 (2008)

    Article  ADS  Google Scholar 

  5. G. Cicero et al., J. Am. Chem. Soc. 130, 1871 (2008)

    Article  Google Scholar 

  6. N. Choudhury, B. Montgomery Pettitt, J. Phys. Chem. B 109, 6422 (2005)

    Article  Google Scholar 

  7. N. Giovambattista, P.J. Rossky, P.G. Debenedetti, Annu. Rev. Phys. Chem. 63, 179 (2012)

    Article  ADS  Google Scholar 

  8. N. Giovambattista, P.G. Debenedetti, C.F. Lopez, P.J. Rossky, Proc. Natl. Acad. Sci. U.S.A. 105, 2274 (2008)

    Article  ADS  Google Scholar 

  9. S.R. Accordino, J.M. Montes de Oca, J.A. Rodriguez Fris, G.A. Appignanesi, J. Chem. Phys. 143, 154704 (2015)

    Article  ADS  Google Scholar 

  10. N. Giovambattista, P.G. Debenedetti, P.J. Rossky, Proc. Natl. Acad. Sci. 106, 15181 (2009)

    Article  ADS  Google Scholar 

  11. B.J. Berne, J.D. Weeks, R. Zhou, Annu. Rev. Phys. Chem. 60, 85 (2009)

    Article  ADS  Google Scholar 

  12. J.L. Kulp III, J.R. Kulp Jr., D.L. Pompliano, F. Guarnieri, J. Am. Chem. Soc. 133, 10740 (2011)

    Article  Google Scholar 

  13. L.M. Alarcón, D.C. Malaspina, E.P. Schulz, M.A. Frechero, G.A. Appignanesi, Chem. Phys. 388, 47 (2011)

    Article  ADS  Google Scholar 

  14. E. Schulz, M. Frechero, G. Appignanesi, A. Fernández, PLoS ONE 5, e12844 (2010)

    Article  ADS  Google Scholar 

  15. E.P. Schulz, L.M. Alarcón, G.A. Appignanesi, Eur. Phys. J. E 34, 114 (2011)

    Article  Google Scholar 

  16. S.R. Accordino, D.C. Malaspina, J.A. Rodriguez Fris, G.A. Appignanesi, Phys. Rev. Lett. 106, 029801 (2011)

    Article  ADS  Google Scholar 

  17. K. Lum, D. Chandler, J.D. Weeks, J. Phys. Chem. B 103, 4570 (1999)

    Article  Google Scholar 

  18. D. Huan, C.J. Margulis, B.J. Berne, Proc. Natl. Acad. Sci. U.S.A. 100, 11953 (2003)

    Article  ADS  Google Scholar 

  19. L. Hua, R. Zangi, B.J. Berne, J. Chem. Phys. C 113, 5244 (2009)

    Article  Google Scholar 

  20. H. Acharya, S. Vembanur, S.N. Jamadagni, S. Garde, Faraday Discuss. 146, 353 (2010)

    Article  ADS  Google Scholar 

  21. S.N. Jamadagni, R. Godawat, S. Garde, Annu. Rev. Chem. Biomol. Eng. 2, 147 (2011)

    Article  Google Scholar 

  22. A. Fernández, in Transformative Concepts for Drug Design: Target Wrapping, Vol. 1 (Springer, Heidelberg, 2010) pp. 1--224

  23. A. Fernández, R. Scott, Phys. Rev. Lett. 91, 018102 (2003)

    Article  ADS  Google Scholar 

  24. S.R. Accordino, J.A. Rodriguez-Fris, G.A. Appignanesi, A. Fernández, Eur. Phys. J. E 35, 59 (2012)

    Article  Google Scholar 

  25. S.R. Accordino, M.A. Morini, M.B. Sierra, J.A. Rodriguez Fris, G.A. Appignanesi, A. Fernández, Proteins Struct. Funct. Bioinf. 80, 1755 (2012)

    Google Scholar 

  26. M.B. Sierra, S.R. Accordino, J.A. Rodriguez-Fris, M.A. Morini, G.A. Appignanesi, A. Fernández Stigliano, Eur. Phys. J. E 36, 62 (2013)

    Article  Google Scholar 

  27. S.R. Accordino, J.A. Rodriguez Fris, G.A. Appignanesi, PLoS ONE 8, e55123 (2013)

    Article  ADS  Google Scholar 

  28. C.A. Menéndez, S.R. Accordino, D.C. Gerbino, G.A. Appignanesi, Eur. Phys. J. E 38, 107 (2015)

    Article  Google Scholar 

  29. C.A. Menéndez, S.R. Accordino, D.C. Gerbino, G.A. Appignanesi, PLoS ONE 11, e0165767 (2016)

    Article  Google Scholar 

  30. A.A. Bogan, K.S. Thorn, J. Mol. Biol. 208, 1 (1998)

    Article  Google Scholar 

  31. J. Li, Q. Liu, Bioinformatics 25, 743 (2009)

    Article  Google Scholar 

  32. H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91, 43 (1995)

    Article  ADS  Google Scholar 

  33. J. Wang, W. Wang, P.A. Kollman, D.A. Case, J. Mol. Graph. Mod. 25, 247260 (2006)

    Article  Google Scholar 

  34. S. Kumar, J.M. Rosenberg, D. Bouzida, R.H. Swendsen, P.A. Kollman, J. Comput. Chem. 13, 1011 (1992)

    Article  Google Scholar 

  35. S. Ramsey, C. Nguyen, R. Salomon-Ferrer, R.C. Walker, M.K. Gilson, T. Kurtzman, J. Comput. Chem. 37, 2029 (2016)

    Article  Google Scholar 

  36. C.N. Nguyen, M.K. Gilson, T. Young, arXiv:1108.4876 (2011)

  37. C.N. Nguyen, A. Cruz, M.K. Gilson, T. Kurtzman, J. Chem. Theor. Comput. 10, 2769 (2014)

    Article  Google Scholar 

  38. D.A. Case, AMBER 10 (University of California, San Francisco, 2008)

  39. Z. Li et al., Nat. Mater. 12, 925 (2013)

    Article  ADS  Google Scholar 

  40. L. Li, D. Bedrov, G.D. Smith, J. Chem. Phys. 123, 204504 (2005)

    Article  ADS  Google Scholar 

  41. L. Li, D. Bedrov, G.D. Smith, J. Phys. Chem. B 110, 10509 (2006)

    Article  Google Scholar 

  42. M.V. Athawale, S.N. Jamadagni, S. Garde, J. Chem. Phys. 131, 115102 (2009)

    Article  ADS  Google Scholar 

  43. Chih-Jen Shih, S. Lin, M.S. Strano, D. Blankschtein, J. Am. Chem. Soc. 132, 14638 (2010)

    Article  Google Scholar 

  44. G. Hummer, J.C. Rasaiah, J.P. Noworyta, Nature 414, 188 (2001)

    Article  ADS  Google Scholar 

  45. H. Tang, D. Liu, Y. Zhao, X. Yang, J. Lu, F. Cui, J. Phys. Chem. C 119, 26712 (2015)

    Article  Google Scholar 

  46. O.-S. Lee, M. Carignano, J. Phys. Chem. C 119, 19415 (2015)

    Article  Google Scholar 

  47. V.V. Chaban, E.E. Fileti, O.V. Prezhdo, J. Phys. Chem. C 121, 911 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo A. Appignanesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Montes de Oca, J.M., Menéndez, C.A., Accordino, S.R. et al. Studies on electrostatic interactions within model nano-confined aqueous environments of different chemical nature. Eur. Phys. J. E 40, 78 (2017). https://doi.org/10.1140/epje/i2017-11568-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11568-6

Keywords

Navigation