The European Physical Journal E

, Volume 15, Issue 3, pp 277–286 | Cite as

Thermophoresis of DNA determined by microfluidic fluorescence

Article

Abstract.

We describe a microfluidic all-optical technique to measure the thermophoresis of molecules. Within micrometer-thick chambers, we heat aqueous solutions with a micrometer-sized focus of infrared light. The temperature increase of about 1 K is monitored with temperature-sensitive fluorescent dyes. We test the approach in measuring the thermophoresis of DNA. We image the concentration of DNA in a second fluorescence-color channel. DNA is depleted away from the heated spot. The profile of depletion is fitted by the thermophoretic theory to reveal the Soret coefficient. We evaluate the method with numerical 3D calculations of temperature profiles, drift, convection and thermophoretic depletion using finite element methods. The approach opens new ways to monitor thermophoresis at the single molecule level, near boundaries and in complex mixtures. The flexible microfluidic setting is a good step towards microfluidic applications of thermophoresis in biotechnology.

PACS.

87.23.-n Ecology and evolution 82.70.Dd Colloids 82.60.Lf Thermodynamics of solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Ludwig, Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl. 20, 539 (1856).Google Scholar
  2. 2.
    C. Soret, Arch. Sci. Phys. Nat. Genève 3, 48 (1879).Google Scholar
  3. 3.
    J.C. Maxwell, J.C. Collected Papers II, 681-712 (1879) (Cambridge University Press, 1890).Google Scholar
  4. 4.
    P.S. Epstein, Z. Phys. 54, 537 (1929).Google Scholar
  5. 5.
    S.R. de Groot, P. Mazur, Non-Equilibrium Thermodynamics (North-Holland, Amsterdam, 1969). Google Scholar
  6. 6.
    D. Braun, A. Libchaber, Phys. Rev. Lett. 89, 188103 (2002).CrossRefGoogle Scholar
  7. 7.
    K. Clusius, G. Dickel, Z. Phys. Chem. B 44, 397, (1939).Google Scholar
  8. 8.
    K. Clusius, M. Huber, Z. Naturforsch. A 10, 230 (1955).Google Scholar
  9. 9.
    M.E. Schimpf, J.C. Giddings, J. Polym. Sci. B 28, 2673 (1990).CrossRefGoogle Scholar
  10. 10.
    B.K. Gale, K.D. Caldwell, A.B. Frazier, IEEE Trans. Biomed. Eng. 45, 1459 (1998).CrossRefGoogle Scholar
  11. 11.
    T.L. Edwards, B.K. Gale, A.B. Frazier, Anal. Chem. 74, 1211 (2002).CrossRefGoogle Scholar
  12. 12.
    D. Braun, A. Libchaber, Phys. Biol. 1, 1 (2004).Google Scholar
  13. 13.
    W. Köhler, P. Rossmanith, J. Phys. Chem. 99, 5838 (1995).Google Scholar
  14. 14.
    C. Debuschewitz, W. Köhler, Phys. Rev. Lett. 87, 055901 (2001).CrossRefGoogle Scholar
  15. 15.
    R. Piazza, A. Guarino, Phys. Rev. Lett. 88, 208302 (2002).Google Scholar
  16. 16.
    S. Iacopini, R. Piazza, Europhys. Lett. 63, 247253 (2003).CrossRefGoogle Scholar
  17. 17.
    R. Rusconi, L. Isa, R. Piazza, J. Opt. Soc. Am. B. 21, 605 (2004).CrossRefGoogle Scholar
  18. 18.
    T. Thorsen, S.J. Maerkl, R. Quake, Science 298, 580 (2002).CrossRefGoogle Scholar
  19. 19.
    A. Pluen, P.A. Netti, R.K. Jain, D.A. Berk, Biophys. J. 77, 542552 (1999).Google Scholar
  20. 20.
    P. Matura, D. Jung, M. Lücke, Phys. Rev. Lett. 92, 254501 (2004).CrossRefGoogle Scholar
  21. 21.
    M. Giglio, A. Vendramini, Phys. Rev. Lett. 38, 26 (1977).CrossRefGoogle Scholar
  22. 22.
    A. Pluen, P.A. Netti, R.K. Jain, D.A. Berk, Biophys. J. 77, 542 (1999).Google Scholar
  23. 23.
    A. Pralle, E.-L. Florin, E.H.K. Stelzer, J.K.H. Hörber, Appl. Phys. A 66, S71-S73 (1998).Google Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  1. 1.Dissipative Biosystems Lab, Applied PhysicsLudwig Maximilians Universität MünchenMünchenGermany

Personalised recommendations