Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

GAMBIT: the global and modular beyond-the-standard-model inference tool

Abstract

We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.

A preprint version of the article is available at ArXiv.

References

  1. 1.

    ATLAS Collaboration, Search for resonances decaying to photon pairs in 3.2 \(\text{fb}^{-1}\) of \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. ATLAS-CONF-2015-081 (2015)

  2. 2.

    ATLAS Collaboration, Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1—interpreted in the phenomenological MSSM. JHEP 10, 134 (2015). arXiv:1508.06608

  3. 3.

    CMS Collaboration, Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV. Phys. Lett. B 758, 152–180 (2016). arXiv:1602.06581

  4. 4.

    G.W. Bennett, B. Bousquet et al., Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035

  5. 5.

    T. Abe, I. Adachi et al., Belle II technical design report. arXiv:1011.0352

  6. 6.

    CMS and LHCb Collaborations, Observation of the rare \(B_{s}^{0}\rightarrow \mu ^+\mu ^-\) decay from the combined analysis of CMS and LHCb data. Nature 522, 68–72 (2015). arXiv:1411.4413

  7. 7.

    XENON100 Collaboration, E. Aprile, M. Alfonsi et al., Dark matter Results from 225 live days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012). arXiv:1207.5988

  8. 8.

    C. Amole, M. Ardid et al., Dark matter search results from the PICO-60 \(\text{ CF }_{3}\) I bubble chamber. Phys. Rev. D 93, 052014 (2016). arXiv:1510.07754

  9. 9.

    D.S. Akerib, H.M. Araújo et al., Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data. Phys. Rev. Lett. 116, 161301 (2016). arXiv:1512.03506

  10. 10.

    Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. cosmological parameters. A&A 594, A13 (2016). arXiv:1502.01589

  11. 11.

    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results. Phys. Rev. D 93, 023527 (2016). arXiv:1506.03811

  12. 12.

    R. Adhikari, M. Agostini et al., A white paper on keV sterile neutrino dark matter. arXiv:1602.04816

  13. 13.

    T. Bringmann, C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects. Phys. Dark Univ. 1, 194–217 (2012). arXiv:1208.5481

  14. 14.

    Fermi-LAT Collaboration, M. Ackermann, A. Albert et al., Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of Fermi large area telescope data. Phys. Rev. Lett. 115, 231301 (2015). arXiv:1503.02641

  15. 15.

    IceCube Collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry. JCAP 04, 022 (2016). arXiv:1601.00653

  16. 16.

    DAMA Collaboration, R. Bernabei, P. Belli et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 167 (2008). arXiv:0804.2741

  17. 17.

    L. Goodenough, D. Hooper, Possible evidence for dark matter annihilation in the inner milky way from the Fermi gamma ray space telescope. arXiv:0910.2998

  18. 18.

    O. Adriani, G.C. Barbarino et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009). arXiv:0810.4995

  19. 19.

    CoGeNT Collaboration, C.E. Aalseth, P.S. Barbeau et al., Search for an annual modulation in a p-type point contact germanium dark matter detector. Phys. Rev. Lett. 107, 141301 (2011). arXiv:1106.0650

  20. 20.

    T. Bringmann, X. Huang, A. Ibarra, S. Vogl, C. Weniger, Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation. JCAP 7, 54 (2012). arXiv:1203.1312

  21. 21.

    E. Bulbul, M. Markevitch et al., Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters. ApJ 789, 13 (2014). arXiv:1402.2301

  22. 22.

    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, J. Franse, Unidentified line in X-ray spectra of the andromeda galaxy and Perseus galaxy cluster. Phys. Rev. Lett. 113, 251301 (2014). arXiv:1402.4119

  23. 23.

    A.C. Vincent, P. Scott, A. Serenelli, Possible indication of momentum-dependent asymmetric dark matter in the sun. Phys. Rev. Lett. 114, 081302 (2015). arXiv:1411.6626

  24. 24.

    ATLAS Collaboration, G. Aad, B. Abbott et al., Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \(\sqrt{s}=8\) TeV with the ATLAS detector. JHEP 12, 55 (2015). arXiv:1506.00962

  25. 25.

    CDMS Collaboration, Z. Ahmed et al., Search for annual modulation in low-energy CDMS-II data. arXiv:1203.1309

  26. 26.

    R. Bartels, S. Krishnamurthy, C. Weniger, Strong support for the millisecond pulsar origin of the Galactic center GeV excess. Phys. Rev. Lett. 116, 051102 (2015). arXiv:1506.05104

  27. 27.

    S.K. Lee, M. Lisanti, B.R. Safdi, T.R. Slatyer, W. Xue, Evidence for unresolved \(\gamma \)-ray point sources in the inner galaxy. Phys. Rev. Lett. 116, 051103 (2016). arXiv:1506.05124

  28. 28.

    T. Jeltema, S. Profumo, Deep XMM observations of Draco rule out at the 99 per cent confidence level a dark matter decay origin for the 3.5 keV line. MNRAS 458, 3592–3596 (2016). arXiv:1512.01239

  29. 29.

    G. Angloher, A. Bento et al., Limits on momentum-dependent asymmetric dark matter with CRESST-II. Phys. Rev. Lett. 117, 021303 (2016). arXiv:1601.04447

  30. 30.

    A.B. Arbuzov, M. Awramik et al., ZFITTER: a semi-analytical program for fermion pair production in \(e^{+}e^{-}\) annihilation, from version 6.21 to version 6.42. Comput. Phys. Commun. 174, 728–758 (2006). arXiv:hep-ph/0507146

  31. 31.

    M. Baak, M. Goebel et al., Updated status of the global electroweak fit and constraints on new physics. Eur. Phys. J. C 72, 2003 (2012). arXiv:1107.0975

  32. 32.

    J. Charles, A. Höcker et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories. Eur. Phys. J. C 41, 1–131 (2005). arXiv:hep-ph/0406184

  33. 33.

    F. Capozzi, G.L. Fogli et al., Status of three-neutrino oscillation parameters, circa 2013. Phys. Rev. D 89, 093018 (2014). arXiv:1312.2878

  34. 34.

    D.V. Forero, M. Tórtola, J.W.F. Valle, Neutrino oscillations refitted. Phys. Rev. D 90, 093006 (2014). arXiv:1405.7540

  35. 35.

    J. Bergström, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, Bayesian global analysis of neutrino oscillation data. JHEP 9, 200 (2015). arXiv:1507.04366

  36. 36.

    E.A. Baltz, P. Gondolo, Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter. JHEP 10, 52 (2004). arXiv:hep-ph/0407039

  37. 37.

    B.C. Allanach, C.G. Lester, Multidimensional mSUGRA likelihood maps. Phys. Rev. D 73, 015013 (2006). arXiv:hep-ph/0507283

  38. 38.

    R. Lafaye, T. Plehn, D. Zerwas, SFITTER: SUSY parameter analysis at LHC and LC. arXiv:hep-ph/0404282

  39. 39.

    R. Ruiz de Austri, R. Trotta, L. Roszkowski, A Markov chain Monte Carlo analysis of CMSSM. JHEP 5, 2 (2006). arXiv:hep-ph/0602028

  40. 40.

    R. Trotta, R.R. de Austri, L. Roszkowski, Prospects for direct dark matter detection in the constrained MSSM. New Astron. Rev. 51, 316–320 (2007). arXiv:astro-ph/0609126

  41. 41.

    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Implications for the constrained MSSM from a new prediction for b \(\rightarrow \) s\(\gamma \). JHEP 7, 75 (2007). arXiv:0705.2012

  42. 42.

    L. Roszkowski, R. Ruiz de Austri, J. Silk, R. Trotta, On prospects for dark matter indirect detection in the constrained MSSM. Phys. Lett. B 671, 10–14 (2009). arXiv:0707.0622

  43. 43.

    R. Trotta, F. Feroz, M. Hobson, L. Roszkowski, R. Ruiz de Austri, The impact of priors and observables on parameter inferences in the constrained MSSM. JHEP 12, 24 (2008). arXiv:0809.3792

  44. 44.

    G.D. Martinez, J.S. Bullock, M. Kaplinghat, L.E. Strigari, R. Trotta, Indirect Dark Matter detection from Dwarf satellites: joint expectations from astrophysics and supersymmetry. JCAP 6, 14 (2009). arXiv:0902.4715

  45. 45.

    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai, T.A. Varley, Global fits of the nonuniversal Higgs model. Phys. Rev. D 83, 015014 (2011). arXiv:0903.1279

  46. 46.

    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Efficient reconstruction of constrained MSSM parameters from LHC data: a case study. Phys. Rev. D 82, 055003 (2010). arXiv:0907.0594

  47. 47.

    P. Scott, J. Conrad et al., Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1. JCAP 1, 31 (2010). arXiv:0909.3300

  48. 48.

    G. Bertone, D.G. Cerdeño, M. Fornasa, R. Ruiz de Austri, R. Trotta, Identification of dark matter particles with LHC and direct detection data. Phys. Rev. D 82, 055008 (2010). arXiv:1005.4280

  49. 49.

    M. Bridges, K. Cranmer et al., A coverage study of CMSSM based on ATLAS sensitivity using fast neural networks techniques. JHEP 3, 12 (2011). arXiv:1011.4306

  50. 50.

    C. Strege, G. Bertone et al., Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data. JCAP 3, 30 (2012). arXiv:1112.4192

  51. 51.

    G. Bertone, D. Cumberbatch, R. Ruiz de Austri, R. Trotta, Dark matter searches: the nightmare scenario. JCAP 1, 4 (2012). arXiv:1107.5813

  52. 52.

    G. Bertone, D.G. Cerdeño et al., Complementarity of indirect and accelerator dark matter searches. Phys. Rev. D 85, 055014 (2012). arXiv:1111.2607

  53. 53.

    P. Scott, C. Savage, J. Edsjö, the IceCube Collaboration, R. Abbasi et al., Use of event-level neutrino telescope data in global fits for theories of new physics. JCAP 11, 57 (2012). arXiv:1207.0810

  54. 54.

    C. Strege, G. Bertone et al., Global fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints. JCAP 4, 13 (2013). arXiv:1212.2636

  55. 55.

    G. Bertone, D.G. Cerde no et al., Global fits of the cMSSM including the first LHC and XENON100 data. JCAP 1, 15 (2012). arXiv:1107.1715

  56. 56.

    G. Bertone, F. Calore et al., Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments, arXiv:1507.07008

  57. 57.

    P. Bechtle, K. Desch, P. Wienemann, Fittino, a program for determining MSSM parameters from collider observables using an iterative method. Comput. Phys. Commun. 174, 47–70 (2006). arXiv:hep-ph/0412012

  58. 58.

    P. Bechtle, K. Desch, M. Uhlenbrock, P. Wienemann, Constraining SUSY models with Fittino using measurements before, with and beyond the LHC. Eur. Phys. J. C 66, 215–259 (2010). arXiv:0907.2589

  59. 59.

    P. Bechtle, T. Bringmann et al., Constrained supersymmetry after two years of LHC data: a global view with Fittino. JHEP 6, 98 (2012). arXiv:1204.4199

  60. 60.

    O. Buchmueller, R. Cavanaugh et al., Predictions for supersymmetric particle masses using indirect experimental and cosmological constraints. JHEP 9, 117 (2008). arXiv:0808.4128

  61. 61.

    O. Buchmueller, R. Cavanaugh et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1. Eur. Phys. J. C 64, 391–415 (2009). arXiv:0907.5568

  62. 62.

    O. Buchmueller, R. Cavanaugh et al., Frequentist analysis of the parameter space of minimal supergravity. Eur. Phys. J. C 71, 1583 (2011). arXiv:1011.6118

  63. 63.

    O. Buchmueller, R. Cavanaugh et al., Implications of initial LHC searches for supersymmetry. Eur. Phys. J. C 71, 1634 (2011). arXiv:1102.4585

  64. 64.

    O. Buchmueller, R. Cavanaugh et al., Supersymmetry and dark matter in light of LHC 2010 and XENON100 data. Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529

  65. 65.

    O. Buchmueller, R. Cavanaugh et al., Supersymmetry in light of 1/fb of LHC data. Eur. Phys. J. C 72, 1878 (2012). arXiv:1110.3568

  66. 66.

    O. Buchmueller, R. Cavanaugh et al., Higgs and supersymmetry. Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564

  67. 67.

    O. Buchmueller, R. Cavanaugh et al., The CMSSM and NUHM1 in light of 7 TeV LHC, \(B_s\rightarrow \mu ^+\mu -\) and XENON100 data. Eur. Phys. J. C 72, 2243 (2012). arXiv:1207.7315

  68. 68.

    O. Buchmueller et al., The CMSSM and NUHM1 after LHC run 1. Eur. Phys. J. C 74, 2922 (2014). arXiv:1312.5250

  69. 69.

    O. Buchmueller et al., The NUHM2 after LHC run 1. Eur. Phys. J. C 74, 3212 (2014). arXiv:1408.4060

  70. 70.

    E. Bagnaschi et al., Likelihood analysis of supersymmetric SU(5) GUTs. Eur. Phys. J. C 77, 104 (2017). arXiv:1610.10084

  71. 71.

    E. Bagnaschi et al., Likelihood analysis of the minimal AMSB model. Eur. Phys. J. C 77, 268 (2017). arXiv:1612.05210

  72. 72.

    B.C. Allanach, K. Cranmer, C.G. Lester, A.M. Weber, Natural priors. CMSSM fits and LHC weather forecasts. JHEP 08, 023 (2007). arXiv:0705.0487

  73. 73.

    S.S. Abdussalam, B.C. Allanach, F. Quevedo, F. Feroz, M. Hobson, Fitting the phenomenological MSSM. Phys. Rev. D 81, 095012 (2010). arXiv:0904.2548

  74. 74.

    S.S. Abdussalam, B.C. Allanach, M.J. Dolan, F. Feroz, M.P. Hobson, Selecting a model of supersymmetry breaking mediation. Phys. Rev. D 80, 035017 (2009). arXiv:0906.0957

  75. 75.

    B.C. Allanach, Impact of CMS multi-jets and missing energy search on CMSSM fits. Phys. Rev. D 83, 095019 (2011). arXiv:1102.3149

  76. 76.

    B.C. Allanach, T.J. Khoo, C.G. Lester, S.L. Williams, The impact of ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit. JHEP 6, 35 (2011). arXiv:1103.0969

  77. 77.

    A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, Y.L.S. Tsai, Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM. Phys. Rev. D 85, 075012 (2012). arXiv:1111.6098

  78. 78.

    L. Roszkowski, E.M. Sessolo, Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM. Phys. Rev. D 86, 095005 (2012). arXiv:1202.1503

  79. 79.

    C. Balázs, A. Buckley, D. Carter, B. Farmer, M. White, Should we still believe in constrained supersymmetry? Eur. Phys. J. C 73, 2563 (2013). arXiv:1205.1568

  80. 80.

    M.E. Cabrera, J.A. Casas, R. Ruiz de Austri, The health of SUSY after the Higgs discovery and the XENON100 data. JHEP 07, 182 (2013). arXiv:1212.4821

  81. 81.

    A. Fowlie, K. Kowalska, L. Roszkowski, E.M. Sessolo, Y.-L.S. Tsai, Dark matter and collider signatures of the MSSM. Phys. Rev. D 88, 055012 (2013). arXiv:1306.1567

  82. 82.

    S. Henrot-Versillé, R. Lafaye et al., Constraining supersymmetry using the relic density and the Higgs boson. Phys. Rev. D 89, 055017 (2014). arXiv:1309.6958

  83. 83.

    D. Kim, P. Athron, C. Balázs, B. Farmer, E. Hutchison, Bayesian naturalness of the CMSSM and CNMSSM. Phys. Rev. D 90, 055008 (2014). arXiv:1312.4150

  84. 84.

    A. Fowlie, M. Raidal, Prospects for constrained supersymmetry at \(\sqrt{s}={33}\,\text{ TeV } \) and \(\sqrt{s}={100}\,\text{ TeV } \) proton-proton super-colliders. Eur. Phys. J. C 74, 2948 (2014). arXiv:1402.5419

  85. 85.

    L. Roszkowski, E.M. Sessolo, A.J. Williams, What next for the CMSSM and the NUHM: improved prospects for superpartner and dark matter detection. JHEP 08, 067 (2014). arXiv:1405.4289

  86. 86.

    K. Kowalska, L. Roszkowski, E.M. Sessolo, A.J. Williams, GUT-inspired SUSY and the muon \(g-2\) anomaly: prospects for LHC 14 TeV. JHEP 06, 020 (2015). arXiv:1503.08219

  87. 87.

    M.E. Cabrera, J.A. Casas, A. Delgado, S. Robles, R. Ruiz de Austri, Naturalness of MSSM dark matter. JHEP 08, 058 (2016). arXiv:1604.02102

  88. 88.

    C. Han, K.-I. Hikasa, L. Wu, J. M. Yang, Y. Zhang, Status of CMSSM in light of current LHC run-2 and LUX data. arXiv:1612.02296

  89. 89.

    C. Strege, G. Bertone et al., Profile likelihood maps of a 15-dimensional MSSM. JHEP 9, 81 (2014). arXiv:1405.0622

  90. 90.

    P. Bechtle, J.E. Camargo-Molina et al., Killing the cMSSM softly. Eur. Phys. J. C 76, 96 (2016). arXiv:1508.05951

  91. 91.

    M.E. Cabrera-Catalan, S. Ando, C. Weniger, F. Zandanel, Indirect and direct detection prospect for TeV dark matter in the nine parameter MSSM. Phys. Rev. D 92, 035018 (2015). arXiv:1503.00599

  92. 92.

    K.J. de Vries, E.A. Bagnaschi et al., The pMSSM10 after LHC run 1. Eur. Phys. J. C 75, 422 (2015). arXiv:1504.03260

  93. 93.

    E.A. Bagnaschi, O. Buchmueller et al., Supersymmetric dark matter after LHC run 1. Eur. Phys. J. C 75, 500 (2015). arXiv:1508.01173

  94. 94.

    C. Balázs, D. Carter, Discovery potential of the next-to-minimal supergravity-motivated model. Phys. Rev. D 78, 055001 (2008). arXiv:0808.0770

  95. 95.

    D.E. Lopez-Fogliani, L. Roszkowski, R.R. de Austri, T.A. Varley, A Bayesian analysis of the constrained NMSSM. Phys. Rev. D 80, 095013 (2009). arXiv:0906.4911

  96. 96.

    K. Kowalska, S. Munir et al., Constrained next-to-minimal supersymmetric standard model with a 126 GeV Higgs boson: a global analysis. Phys. Rev. D 87, 115010 (2013). arXiv:1211.1693

  97. 97.

    A. Fowlie, Is the CNMSSM more credible than the CMSSM? Eur. Phys. J. C 74, 3105 (2014). arXiv:1407.7534

  98. 98.

    G. Bertone, K. Kong, R.R. de Austri, R. Trotta, Global fits of the minimal universal extra dimensions scenario. Phys. Rev. D 83, 036008 (2011). arXiv:1010.2023

  99. 99.

    K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan, A. Zee, Global study of the simplest scalar phantom dark matter model. JCAP 1210, 042 (2012). arXiv:1207.4930

  100. 100.

    A. Arhrib, Y.-L.S. Tsai, Q. Yuan, T.-C. Yuan, An updated analysis of inert Higgs doublet model in light of the recent results from LUX, PLANCK, AMS-02 and LHC. JCAP 1406, 030 (2014). arXiv:1310.0358

  101. 101.

    S. Matsumoto, S. Mukhopadhyay, Y.-L.S. Tsai, Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory. JHEP 10, 155 (2014). arXiv:1407.1859

  102. 102.

    D. Chowdhury, O. Eberhardt, Global fits of the two-loop renormalized two-Higgs-doublet model with soft Z \(_{2}\) breaking. JHEP 11, 52 (2015). arXiv:1503.08216

  103. 103.

    S. Liem, G. Bertone et al., Effective field theory of dark matter: a global analysis. JHEP 9, 77 (2016). arXiv:1603.05994

  104. 104.

    X. Huang, Y.-L .S. Tsai, Q. Yuan, LikeDM: likelihood calculator of dark matter detection. Comput. Phys. Commun. 213, 252–263 (2017). arXiv:1603.07119

  105. 105.

    S. Banerjee, S. Matsumoto, K. Mukaida, Y.-L.S. Tsai, WIMP dark matter in a well-tempered regime: a case study on singlet-doublets Fermionic WIMP. JHEP 11, 070 (2016). arXiv:1603.07387

  106. 106.

    S. Matsumoto, S. Mukhopadhyay, Y.-L.S. Tsai, Effective theory of WIMP dark matter supplemented by simplified models: singlet-like Majorana fermion case. Phys. Rev. D 94, 065034 (2016). arXiv:1604.02230

  107. 107.

    A. Cuoco, B. Eiteneuer, J. Heisig, M. Krämer, A global fit of the \(\gamma \)-ray galactic center excess within the scalar singlet Higgs portal model. JCAP 6, 050 (2016). arXiv:1603.08228

  108. 108.

    GAMBIT Collider Workgroup: C. Balázs, A. Buckley et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. arXiv:1705.07919

  109. 109.

    GAMBIT Flavour Workgroup, F. U. Bernlochner, M. Chrzaszcz et al., FlavBit: a GAMBIT module for computing flavour observables and likelihoods. arXiv:1705.07933

  110. 110.

    GAMBIT Dark Matter Workgroup, T. Bringmann, J. Conrad et al., DarkBit: a GAMBIT module for computing dark matter observables and likelihoods. arXiv:1705.07920

  111. 111.

    GAMBIT Models Workgroup, P. Athron, C. Balázs et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. arXiv:1705.07936

  112. 112.

    GAMBIT Scanner Workgroup, G. D. Martinez, J. McKay et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. arXiv:1705.07959

  113. 113.

    R. Ruiz de Austri, R. Trotta, F. Feroz, SuperBayeS. http://www.superbayes.org

  114. 114.

    Y. Akrami, P. Scott, J. Edsjö, J. Conrad, L. Bergström, A profile likelihood analysis of the constrained MSSM with genetic algorithms. JHEP 4, 57 (2010). arXiv:0910.3950

  115. 115.

    F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri, R. Trotta, Challenges of profile likelihood evaluation in multi-dimensional SUSY scans. JHEP 6, 42 (2011). arXiv:1101.3296

  116. 116.

    Y. Akrami, C. Savage, P. Scott, J. Conrad, J. Edsjö, Statistical coverage for supersymmetric parameter estimation: a case study with direct detection of dark matter. JCAP 7, 2 (2011). arXiv:1011.4297

  117. 117.

    C. Strege, R. Trotta, G. Bertone, A.H.G. Peter, P. Scott, Fundamental statistical limitations of future dark matter direct detection experiments. Phys. Rev. D 86, 023507 (2012). arXiv:1201.3631

  118. 118.

    C.F. Berger, J.S. Gainer, J.A.L. Hewett, T.G. Rizzo, Supersymmetry without prejudice. JHEP 2, 23 (2009). arXiv:0812.0980

  119. 119.

    GAMBIT Collaboration, P. Athron, C. Balázs et al., Global fits of GUT-scale SUSY models with GAMBIT. arXiv:1705.07935

  120. 120.

    GAMBIT Collaboration, P. Athron, C. Balázs et al., A global fit of the MSSM with GAMBIT. arXiv:1705.07917

  121. 121.

    GAMBIT Collaboration, P. Athron, C. Balázs et al., Status of the scalar singlet dark matter model. arXiv:1705.07931

  122. 122.

    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097

  123. 123.

    P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY—a spectrum generator generator for supersymmetric models. Comput. Phys. Commun. 190, 139–172 (2015). arXiv:1406.2319

  124. 124.

    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002). arXiv:hep-ph/0104145

  125. 125.

    T. Sjostrand, S. Ask et al., An introduction to PYTHIA 8.2. Comput. Phys. Commum. 191, 159–177 (2015). arXiv:1410.3012

  126. 126.

    S. Ovyn, X. Rouby, V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment. arXiv:0903.2225

  127. 127.

    J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment. JHEP 1402, 057 (2014). arXiv:1307.6346

  128. 128.

    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the tevatron. Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169

  129. 129.

    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the tevatron. Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898

  130. 130.

    P. Bechtle, O. Brein et al., \({ HiggsBounds}-4\): improved tests of extended Higgs sectors against exclusion bounds from LEP, the tevatron and the LHC. Eur. Phys. J. C 74, 2693 (2014). arXiv:1311.0055

  131. 131.

    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the tevatron and the LHC. Eur. Phys. J. C 74, 2711 (2014). arXiv:1305.1933

  132. 132.

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. JHEP 06, 128 (2011). arXiv:1106.0522

  133. 133.

    J. Alwall, R. Frederix et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). arXiv:1405.0301

  134. 134.

    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of \(B \rightarrow K^* \gamma \) in the MSSM. Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067

  135. 135.

    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry. Comput. Phys. Commun. 180, 1579 (2009). arXiv:0808.3144

  136. 136.

    F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: extension to NMSSM. Comput. Phys. Commun. 180, 1718 (2009)

  137. 137.

    H. Bahl, S. Heinemeyer, W. Hollik, G. Weiglein, Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass. arXiv:1706.00346

  138. 138.

    H. Bahl, W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations. Eur. Phys. J. C 76, 499 (2016). arXiv:1608.01880

  139. 139.

    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model. Phys. Rev. Lett. 112, 141801 (2014). arXiv:1312.4937

  140. 140.

    M. Frank, T. Hahn et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. JHEP 02, 047 (2007). arXiv:hep-ph/0611326

  141. 141.

    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Towards high precision predictions for the MSSM Higgs sector. Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020

  142. 142.

    S. Heinemeyer, W. Hollik, G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level. Eur. Phys. J. C 9, 343–366 (1999). arXiv:hep-ph/9812472

  143. 143.

    S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM. Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320

  144. 144.

    F. Mahmoudi, S. Neshatpour, J. Virto, \(B \rightarrow K^{*} \mu ^{+} \mu ^{-}\) optimised observables in the MSSM. Eur. Phys. J. C 74, 2927 (2014). arXiv:1401.2145

  145. 145.

    W. Altmannshofer, D.M. Straub, New physics in \(B \rightarrow K^*\mu \mu \)? Eur. Phys. J. C 73, 2646 (2013). arXiv:1308.1501

  146. 146.

    S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, Global analysis of \(b\rightarrow s\ell \ell \) anomalies. JHEP 06, 092 (2016). arXiv:1510.04239

  147. 147.

    P. Gondolo, J. Edsjö et al., DarkSUSY: computing supersymmetric dark matter properties numerically. JCAP 7, 8 (2004). arXiv:astro-ph/0406204

  148. 148.

    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, MicrOMEGAs: a program for calculating the relic density in the MSSM. Comput. Phys. Commun. 149, 103–120 (2002). arXiv:hep-ph/0112278

  149. 149.

    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs: version 1.3. Comput. Phys. Commun. 174, 577–604 (2006). arXiv:hep-ph/0405253

  150. 150.

    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model. Comput. Phys. Commun. 176, 367–382 (2007). arXiv:hep-ph/0607059

  151. 151.

    G. Bélanger, F. Boudjema et al., Indirect search for dark matter with micrOMEGAs2.4. Comput. Phys. Commun. 182, 842–856 (2011). arXiv:1004.1092

  152. 152.

    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs 3: a program for calculating dark matter observables. Comput. Phys. Commun. 185, 960–985 (2014). arXiv:1305.0237

  153. 153.

    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs4.1: two dark matter candidates. Comput. Phys. Commun. 192, 322–329 (2015). arXiv:1407.6129

  154. 154.

    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at \(e^+e^-\) colliders. Comput. Phys. Commun. 153, 275–315 (2003). arXiv:hep-ph/0301101

  155. 155.

    W. Porod, F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM. Comput. Phys. Commun. 183, 2458–2469 (2012). arXiv:1104.1573

  156. 156.

    B.C. Allanach, M.A. Bernhardt, Including R-parity violation in the numerical computation of the spectrum of the minimal supersymmetric standard model: SOFTSUSY. Comput. Phys. Commun. 181, 232–245 (2010). arXiv:0903.1805

  157. 157.

    B.C. Allanach, C.H. Kom, M. Hanussek, Computation of neutrino masses in R-parity violating supersymmetry: SOFTSUSY3.2. Comput. Phys. Commun. 183, 785–793 (2012). arXiv:1109.3735

  158. 158.

    B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt, A.G. Williams, Next-to-minimal SOFTSUSY. Comput. Phys. Commun. 185, 2322–2339 (2014). arXiv:1311.7659

  159. 159.

    B.C. Allanach, A. Bednyakov, R. Ruiz de Austri, Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5. Comput. Phys. Commun. 189, 192–206 (2015). arXiv:1407.6130

  160. 160.

    A. Djouadi, M.M. Mühlleitner, M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys. Polon. 38, 635–644 (2007). arXiv:hep-ph/0609292

  161. 161.

    M. Muhlleitner, A. Djouadi, Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM. Comput. Phys. Commun. 168, 46–70 (2005). arXiv:hep-ph/0311167

  162. 162.

    A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331

  163. 163.

    A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56–74 (1998). arXiv:hep-ph/9704448

  164. 164.

    P. Athron, M. Bach et al., GM2Calc: precise MSSM prediction for (g-2) of the muon. Eur. Phys. J. C 76, 62 (2016). arXiv:1510.08071

  165. 165.

    Message Passing Forum, MPI: A Message-Passing Interface Standard (University of Tennessee, Knoxville, 1994)

  166. 166.

    L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55 (1998)

  167. 167.

    B.C. Allanach et al., SUSY Les Houches accord 2. Comput. Phys. Commun. 180, 8–25 (2009). arXiv:0801.0045

  168. 168.

    H. Baer, X. Tata, Weak Scale Supersymmetry (Cambridge University Press, Cambridge, 2006)

  169. 169.

    H. Silverwood, P. Scott et al., Sensitivity of IceCube-DeepCore to neutralino dark matter in the MSSM-25. JCAP 3, 27 (2013). arXiv:1210.0844

  170. 170.

    R.C. Cotta, A. Drlica-Wagner et al., Constraints on the pMSSM from LAT observations of dwarf spheroidal galaxies. JCAP 4, 16 (2012). arXiv:1111.2604

  171. 171.

    J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le, T.G. Rizzo, Supersymmetry without prejudice at the LHC. Eur. Phys. J. C 71, 1697 (2011). arXiv:1009.2539

  172. 172.

    A. Arbey, M. Battaglia, F. Mahmoudi, Implications of LHC searches on SUSY particle spectra. The pMSSM parameter space with neutralino dark matter. Eur. Phys. J. C 72, 1847 (2012). arXiv:1110.3726

  173. 173.

    L. Bergström, P. Gondolo, Limits on direct detection of neutralino dark matter from \(b\rightarrow s\gamma \) decays. Astropart. Phys. 5, 263–278 (1996). arXiv:hep-ph/9510252

  174. 174.

    M. Berg, J. Edsjö, P. Gondolo, E. Lundström, S. Sjörs, Neutralino dark matter in BMSSM effective theory. JCAP 8, 35 (2009). arXiv:0906.0583

  175. 175.

    E. Dudas, Y. Mambrini, A. Mustafayev, K.A. Olive, Relating the CMSSM and SUGRA models with GUT scale and super-GUT scale supersymmetry breaking. Eur. Phys. J. C 72, 2138 (2012). arXiv:1205.5988. [Erratum: Eur. Phys. J. C 73, 2430 (2013)]

  176. 176.

    Y. Akrami, C. Savage, P. Scott, J. Conrad, J. Edsjö, How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry? JCAP 1104, 012 (2011). arXiv:1011.4318

  177. 177.

    R. Schoenrich, J. Binney, W. Dehnen, Local kinematics and the local standard of rest. MNRAS 403, 1829 (2010). arXiv:0912.3693

  178. 178.

    J.R. Ellis, K.A. Olive, C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter. Phys. Rev. D 77, 065026 (2008). arXiv:0801.3656

  179. 179.

    R. D. Young, Strange quark content of the nucleon and dark matter searches. PoS LATTICE2012, 014 (2012). arXiv:1301.1765

  180. 180.

    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators. JHEP 07, 036 (2004). arXiv:hep-ph/0311123

  181. 181.

    P. Scott, Pippi—painless parsing, post-processing and plotting of posterior and likelihood samples. Eur. Phys. J. Plus 127, 138 (2012). arXiv:1206.2245

  182. 182.

    F. Feroz, M.P. Hobson, M. Bridges, MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. MNRAS 398, 1601–1614 (2009). arXiv:0809.3437

  183. 183.

    A. Putze, L. Derome, The Grenoble Analysis Toolkit (GreAT)—a statistical analysis framework. Phys. Dark Univ. 5, 29–34 (2014)

  184. 184.

    A. Lewis, Efficient sampling of fast and slow cosmological parameters. Phys. Rev. D 87, 103529 (2013). arXiv:1304.4473

  185. 185.

    A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66, 103511 (2002). arXiv:astro-ph/0205436

Download references

Acknowledgements

We warmly thank the Casa Matemáticas Oaxaca, affiliated with the Banff International Research Station, for hospitality whilst part of this work was completed, and the staff at Cyfronet, for their always helpful supercomputing support. GAMBIT has been supported by STFC (UK; ST/K00414X/1, ST/P000762/1), the Royal Society (UK; UF110191), Glasgow University (UK; Leadership Fellowship), the Research Council of Norway (FRIPRO 230546/F20), NOTUR (Norway; NN9284K), the Knut and Alice Wallenberg Foundation (Sweden; Wallenberg Academy Fellowship), the Swedish Research Council (621-2014-5772), the Australian Research Council (CE110001004, FT130100018, FT140100244, FT160100274), The University of Sydney (Australia; IRCA-G162448), PLGrid Infrastructure (Poland), Polish National Science Center (Sonata UMO-2015/17/D/ST2/03532), the Swiss National Science Foundation (PP00P2-144674), European Commission Horizon 2020 (Marie Skłodowska-Curie actions H2020-MSCA-RISE-2015-691164, European Research Council Starting Grant ERC-2014-STG-638528), the ERA-CAN+ Twinning Program (EU & Canada), the Netherlands Organisation for Scientific Research (NWO-Vidi 016.149.331), the National Science Foundation (USA; DGE-1339067), the FRQNT (Québec) and NSERC/The Canadian Tri-Agencies Research Councils (BPDF-424460-2012).

Author information

Correspondence to Pat Scott.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Athron, P., Balazs, C., Bringmann, T. et al. GAMBIT: the global and modular beyond-the-standard-model inference tool. Eur. Phys. J. C 77, 784 (2017). https://doi.org/10.1140/epjc/s10052-017-5321-8

Download citation