Advertisement

GAMBIT: the global and modular beyond-the-standard-model inference tool

  • The GAMBIT Collaboration
  • Peter Athron
  • Csaba Balazs
  • Torsten Bringmann
  • Andy Buckley
  • Marcin Chrząszcz
  • Jan Conrad
  • Jonathan M. Cornell
  • Lars A. Dal
  • Hugh Dickinson
  • Joakim Edsjö
  • Ben Farmer
  • Tomás E. Gonzalo
  • Paul Jackson
  • Abram Krislock
  • Anders Kvellestad
  • Johan Lundberg
  • James McKay
  • Farvah Mahmoudi
  • Gregory D. Martinez
  • Antje Putze
  • Are Raklev
  • Joachim Ripken
  • Christopher Rogan
  • Aldo Saavedra
  • Christopher Savage
  • Pat Scott
  • Seon-Hee Seo
  • Nicola Serra
  • Christoph Weniger
  • Martin White
  • Sebastian Wild
Open Access
Special Article - Tools for Experiment and Theory

Abstract

We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.

Notes

Acknowledgements

We warmly thank the Casa Matemáticas Oaxaca, affiliated with the Banff International Research Station, for hospitality whilst part of this work was completed, and the staff at Cyfronet, for their always helpful supercomputing support. GAMBIT has been supported by STFC (UK; ST/K00414X/1, ST/P000762/1), the Royal Society (UK; UF110191), Glasgow University (UK; Leadership Fellowship), the Research Council of Norway (FRIPRO 230546/F20), NOTUR (Norway; NN9284K), the Knut and Alice Wallenberg Foundation (Sweden; Wallenberg Academy Fellowship), the Swedish Research Council (621-2014-5772), the Australian Research Council (CE110001004, FT130100018, FT140100244, FT160100274), The University of Sydney (Australia; IRCA-G162448), PLGrid Infrastructure (Poland), Polish National Science Center (Sonata UMO-2015/17/D/ST2/03532), the Swiss National Science Foundation (PP00P2-144674), European Commission Horizon 2020 (Marie Skłodowska-Curie actions H2020-MSCA-RISE-2015-691164, European Research Council Starting Grant ERC-2014-STG-638528), the ERA-CAN+ Twinning Program (EU & Canada), the Netherlands Organisation for Scientific Research (NWO-Vidi 016.149.331), the National Science Foundation (USA; DGE-1339067), the FRQNT (Québec) and NSERC/The Canadian Tri-Agencies Research Councils (BPDF-424460-2012).

References

  1. 1.
    ATLAS Collaboration, Search for resonances decaying to photon pairs in 3.2 \(\text{fb}^{-1}\) of \(pp\) collisions at \(\sqrt{s} = 13\) TeV with the ATLAS detector. ATLAS-CONF-2015-081 (2015)Google Scholar
  2. 2.
    ATLAS Collaboration, Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1—interpreted in the phenomenological MSSM. JHEP 10, 134 (2015). arXiv:1508.06608
  3. 3.
    CMS Collaboration, Search for supersymmetry in the multijet and missing transverse momentum final state in pp collisions at 13 TeV. Phys. Lett. B 758, 152–180 (2016). arXiv:1602.06581
  4. 4.
    G.W. Bennett, B. Bousquet et al., Final report of the E821 muon anomalous magnetic moment measurement at BNL. Phys. Rev. D 73, 072003 (2006). arXiv:hep-ex/0602035 ADSCrossRefGoogle Scholar
  5. 5.
    T. Abe, I. Adachi et al., Belle II technical design report. arXiv:1011.0352
  6. 6.
    CMS and LHCb Collaborations, Observation of the rare \(B_{s}^{0}\rightarrow \mu ^+\mu ^-\) decay from the combined analysis of CMS and LHCb data. Nature 522, 68–72 (2015). arXiv:1411.4413 ADSCrossRefGoogle Scholar
  7. 7.
    XENON100 Collaboration, E. Aprile, M. Alfonsi et al., Dark matter Results from 225 live days of XENON100 data. Phys. Rev. Lett. 109, 181301 (2012). arXiv:1207.5988 CrossRefGoogle Scholar
  8. 8.
    C. Amole, M. Ardid et al., Dark matter search results from the PICO-60 \(\text{ CF }_{3}\) I bubble chamber. Phys. Rev. D 93, 052014 (2016). arXiv:1510.07754
  9. 9.
    D.S. Akerib, H.M. Araújo et al., Improved limits on scattering of weakly interacting massive particles from reanalysis of 2013 LUX data. Phys. Rev. Lett. 116, 161301 (2016). arXiv:1512.03506
  10. 10.
    Planck Collaboration, P.A.R. Ade et al., Planck 2015 results. XIII. cosmological parameters. A&A 594, A13 (2016). arXiv:1502.01589
  11. 11.
    T.R. Slatyer, Indirect dark matter signatures in the cosmic dark ages. I. Generalizing the bound on s-wave dark matter annihilation from Planck results. Phys. Rev. D 93, 023527 (2016). arXiv:1506.03811
  12. 12.
    R. Adhikari, M. Agostini et al., A white paper on keV sterile neutrino dark matter. arXiv:1602.04816
  13. 13.
    T. Bringmann, C. Weniger, Gamma ray signals from dark matter: concepts, status and prospects. Phys. Dark Univ. 1, 194–217 (2012). arXiv:1208.5481 CrossRefGoogle Scholar
  14. 14.
    Fermi-LAT Collaboration, M. Ackermann, A. Albert et al., Searching for dark matter annihilation from milky way dwarf spheroidal galaxies with six years of Fermi large area telescope data. Phys. Rev. Lett. 115, 231301 (2015). arXiv:1503.02641
  15. 15.
    IceCube Collaboration, M.G. Aartsen et al., Improved limits on dark matter annihilation in the Sun with the 79-string IceCube detector and implications for supersymmetry. JCAP 04, 022 (2016). arXiv:1601.00653
  16. 16.
    DAMA Collaboration, R. Bernabei, P. Belli et al., First results from DAMA/LIBRA and the combined results with DAMA/NaI. Eur. Phys. J. C 167 (2008). arXiv:0804.2741
  17. 17.
    L. Goodenough, D. Hooper, Possible evidence for dark matter annihilation in the inner milky way from the Fermi gamma ray space telescope. arXiv:0910.2998
  18. 18.
    O. Adriani, G.C. Barbarino et al., An anomalous positron abundance in cosmic rays with energies 1.5–100 GeV. Nature 458, 607–609 (2009). arXiv:0810.4995 ADSCrossRefGoogle Scholar
  19. 19.
    CoGeNT Collaboration, C.E. Aalseth, P.S. Barbeau et al., Search for an annual modulation in a p-type point contact germanium dark matter detector. Phys. Rev. Lett. 107, 141301 (2011). arXiv:1106.0650
  20. 20.
    T. Bringmann, X. Huang, A. Ibarra, S. Vogl, C. Weniger, Fermi-LAT search for internal bremsstrahlung signatures from dark matter annihilation. JCAP 7, 54 (2012). arXiv:1203.1312 ADSCrossRefGoogle Scholar
  21. 21.
    E. Bulbul, M. Markevitch et al., Detection of an unidentified emission line in the stacked X-ray spectrum of galaxy clusters. ApJ 789, 13 (2014). arXiv:1402.2301 ADSCrossRefGoogle Scholar
  22. 22.
    A. Boyarsky, O. Ruchayskiy, D. Iakubovskyi, J. Franse, Unidentified line in X-ray spectra of the andromeda galaxy and Perseus galaxy cluster. Phys. Rev. Lett. 113, 251301 (2014). arXiv:1402.4119 ADSCrossRefGoogle Scholar
  23. 23.
    A.C. Vincent, P. Scott, A. Serenelli, Possible indication of momentum-dependent asymmetric dark matter in the sun. Phys. Rev. Lett. 114, 081302 (2015). arXiv:1411.6626 ADSCrossRefGoogle Scholar
  24. 24.
    ATLAS Collaboration, G. Aad, B. Abbott et al., Search for high-mass diboson resonances with boson-tagged jets in proton-proton collisions at \(\sqrt{s}=8\) TeV with the ATLAS detector. JHEP 12, 55 (2015). arXiv:1506.00962
  25. 25.
    CDMS Collaboration, Z. Ahmed et al., Search for annual modulation in low-energy CDMS-II data. arXiv:1203.1309
  26. 26.
    R. Bartels, S. Krishnamurthy, C. Weniger, Strong support for the millisecond pulsar origin of the Galactic center GeV excess. Phys. Rev. Lett. 116, 051102 (2015). arXiv:1506.05104
  27. 27.
    S.K. Lee, M. Lisanti, B.R. Safdi, T.R. Slatyer, W. Xue, Evidence for unresolved \(\gamma \)-ray point sources in the inner galaxy. Phys. Rev. Lett. 116, 051103 (2016). arXiv:1506.05124
  28. 28.
    T. Jeltema, S. Profumo, Deep XMM observations of Draco rule out at the 99 per cent confidence level a dark matter decay origin for the 3.5 keV line. MNRAS 458, 3592–3596 (2016). arXiv:1512.01239
  29. 29.
    G. Angloher, A. Bento et al., Limits on momentum-dependent asymmetric dark matter with CRESST-II. Phys. Rev. Lett. 117, 021303 (2016). arXiv:1601.04447
  30. 30.
    A.B. Arbuzov, M. Awramik et al., ZFITTER: a semi-analytical program for fermion pair production in \(e^{+}e^{-}\) annihilation, from version 6.21 to version 6.42. Comput. Phys. Commun. 174, 728–758 (2006). arXiv:hep-ph/0507146 ADSCrossRefGoogle Scholar
  31. 31.
    M. Baak, M. Goebel et al., Updated status of the global electroweak fit and constraints on new physics. Eur. Phys. J. C 72, 2003 (2012). arXiv:1107.0975 ADSCrossRefGoogle Scholar
  32. 32.
    J. Charles, A. Höcker et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories. Eur. Phys. J. C 41, 1–131 (2005). arXiv:hep-ph/0406184 ADSCrossRefGoogle Scholar
  33. 33.
    F. Capozzi, G.L. Fogli et al., Status of three-neutrino oscillation parameters, circa 2013. Phys. Rev. D 89, 093018 (2014). arXiv:1312.2878 ADSCrossRefGoogle Scholar
  34. 34.
    D.V. Forero, M. Tórtola, J.W.F. Valle, Neutrino oscillations refitted. Phys. Rev. D 90, 093006 (2014). arXiv:1405.7540 ADSCrossRefGoogle Scholar
  35. 35.
    J. Bergström, M.C. Gonzalez-Garcia, M. Maltoni, T. Schwetz, Bayesian global analysis of neutrino oscillation data. JHEP 9, 200 (2015). arXiv:1507.04366
  36. 36.
    E.A. Baltz, P. Gondolo, Markov chain Monte Carlo exploration of minimal supergravity with implications for dark matter. JHEP 10, 52 (2004). arXiv:hep-ph/0407039 ADSCrossRefGoogle Scholar
  37. 37.
    B.C. Allanach, C.G. Lester, Multidimensional mSUGRA likelihood maps. Phys. Rev. D 73, 015013 (2006). arXiv:hep-ph/0507283 ADSCrossRefGoogle Scholar
  38. 38.
    R. Lafaye, T. Plehn, D. Zerwas, SFITTER: SUSY parameter analysis at LHC and LC. arXiv:hep-ph/0404282
  39. 39.
    R. Ruiz de Austri, R. Trotta, L. Roszkowski, A Markov chain Monte Carlo analysis of CMSSM. JHEP 5, 2 (2006). arXiv:hep-ph/0602028 ADSCrossRefGoogle Scholar
  40. 40.
    R. Trotta, R.R. de Austri, L. Roszkowski, Prospects for direct dark matter detection in the constrained MSSM. New Astron. Rev. 51, 316–320 (2007). arXiv:astro-ph/0609126 ADSCrossRefGoogle Scholar
  41. 41.
    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Implications for the constrained MSSM from a new prediction for b \(\rightarrow \) s\(\gamma \). JHEP 7, 75 (2007). arXiv:0705.2012 ADSCrossRefGoogle Scholar
  42. 42.
    L. Roszkowski, R. Ruiz de Austri, J. Silk, R. Trotta, On prospects for dark matter indirect detection in the constrained MSSM. Phys. Lett. B 671, 10–14 (2009). arXiv:0707.0622 ADSCrossRefGoogle Scholar
  43. 43.
    R. Trotta, F. Feroz, M. Hobson, L. Roszkowski, R. Ruiz de Austri, The impact of priors and observables on parameter inferences in the constrained MSSM. JHEP 12, 24 (2008). arXiv:0809.3792 ADSCrossRefGoogle Scholar
  44. 44.
    G.D. Martinez, J.S. Bullock, M. Kaplinghat, L.E. Strigari, R. Trotta, Indirect Dark Matter detection from Dwarf satellites: joint expectations from astrophysics and supersymmetry. JCAP 6, 14 (2009). arXiv:0902.4715 ADSCrossRefGoogle Scholar
  45. 45.
    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Y.-L.S. Tsai, T.A. Varley, Global fits of the nonuniversal Higgs model. Phys. Rev. D 83, 015014 (2011). arXiv:0903.1279 ADSCrossRefGoogle Scholar
  46. 46.
    L. Roszkowski, R. Ruiz de Austri, R. Trotta, Efficient reconstruction of constrained MSSM parameters from LHC data: a case study. Phys. Rev. D 82, 055003 (2010). arXiv:0907.0594 ADSCrossRefGoogle Scholar
  47. 47.
    P. Scott, J. Conrad et al., Direct constraints on minimal supersymmetry from Fermi-LAT observations of the dwarf galaxy Segue 1. JCAP 1, 31 (2010). arXiv:0909.3300 ADSCrossRefGoogle Scholar
  48. 48.
    G. Bertone, D.G. Cerdeño, M. Fornasa, R. Ruiz de Austri, R. Trotta, Identification of dark matter particles with LHC and direct detection data. Phys. Rev. D 82, 055008 (2010). arXiv:1005.4280
  49. 49.
    M. Bridges, K. Cranmer et al., A coverage study of CMSSM based on ATLAS sensitivity using fast neural networks techniques. JHEP 3, 12 (2011). arXiv:1011.4306 ADSzbMATHCrossRefGoogle Scholar
  50. 50.
    C. Strege, G. Bertone et al., Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data. JCAP 3, 30 (2012). arXiv:1112.4192 ADSCrossRefGoogle Scholar
  51. 51.
    G. Bertone, D. Cumberbatch, R. Ruiz de Austri, R. Trotta, Dark matter searches: the nightmare scenario. JCAP 1, 4 (2012). arXiv:1107.5813 ADSCrossRefGoogle Scholar
  52. 52.
    G. Bertone, D.G. Cerdeño et al., Complementarity of indirect and accelerator dark matter searches. Phys. Rev. D 85, 055014 (2012). arXiv:1111.2607
  53. 53.
    P. Scott, C. Savage, J. Edsjö, the IceCube Collaboration, R. Abbasi et al., Use of event-level neutrino telescope data in global fits for theories of new physics. JCAP 11, 57 (2012). arXiv:1207.0810
  54. 54.
    C. Strege, G. Bertone et al., Global fits of the cMSSM and NUHM including the LHC Higgs discovery and new XENON100 constraints. JCAP 4, 13 (2013). arXiv:1212.2636 ADSCrossRefGoogle Scholar
  55. 55.
    G. Bertone, D.G. Cerde no et al., Global fits of the cMSSM including the first LHC and XENON100 data. JCAP 1, 15 (2012). arXiv:1107.1715
  56. 56.
    G. Bertone, F. Calore et al., Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments, arXiv:1507.07008
  57. 57.
    P. Bechtle, K. Desch, P. Wienemann, Fittino, a program for determining MSSM parameters from collider observables using an iterative method. Comput. Phys. Commun. 174, 47–70 (2006). arXiv:hep-ph/0412012 ADSCrossRefGoogle Scholar
  58. 58.
    P. Bechtle, K. Desch, M. Uhlenbrock, P. Wienemann, Constraining SUSY models with Fittino using measurements before, with and beyond the LHC. Eur. Phys. J. C 66, 215–259 (2010). arXiv:0907.2589 ADSCrossRefGoogle Scholar
  59. 59.
    P. Bechtle, T. Bringmann et al., Constrained supersymmetry after two years of LHC data: a global view with Fittino. JHEP 6, 98 (2012). arXiv:1204.4199 ADSCrossRefGoogle Scholar
  60. 60.
    O. Buchmueller, R. Cavanaugh et al., Predictions for supersymmetric particle masses using indirect experimental and cosmological constraints. JHEP 9, 117 (2008). arXiv:0808.4128 ADSCrossRefGoogle Scholar
  61. 61.
    O. Buchmueller, R. Cavanaugh et al., Likelihood functions for supersymmetric observables in frequentist analyses of the CMSSM and NUHM1. Eur. Phys. J. C 64, 391–415 (2009). arXiv:0907.5568 ADSCrossRefGoogle Scholar
  62. 62.
    O. Buchmueller, R. Cavanaugh et al., Frequentist analysis of the parameter space of minimal supergravity. Eur. Phys. J. C 71, 1583 (2011). arXiv:1011.6118 ADSCrossRefGoogle Scholar
  63. 63.
    O. Buchmueller, R. Cavanaugh et al., Implications of initial LHC searches for supersymmetry. Eur. Phys. J. C 71, 1634 (2011). arXiv:1102.4585 ADSCrossRefGoogle Scholar
  64. 64.
    O. Buchmueller, R. Cavanaugh et al., Supersymmetry and dark matter in light of LHC 2010 and XENON100 data. Eur. Phys. J. C 71, 1722 (2011). arXiv:1106.2529 ADSCrossRefGoogle Scholar
  65. 65.
    O. Buchmueller, R. Cavanaugh et al., Supersymmetry in light of 1/fb of LHC data. Eur. Phys. J. C 72, 1878 (2012). arXiv:1110.3568 ADSCrossRefGoogle Scholar
  66. 66.
    O. Buchmueller, R. Cavanaugh et al., Higgs and supersymmetry. Eur. Phys. J. C 72, 2020 (2012). arXiv:1112.3564 ADSCrossRefGoogle Scholar
  67. 67.
    O. Buchmueller, R. Cavanaugh et al., The CMSSM and NUHM1 in light of 7 TeV LHC, \(B_s\rightarrow \mu ^+\mu -\) and XENON100 data. Eur. Phys. J. C 72, 2243 (2012). arXiv:1207.7315 ADSCrossRefGoogle Scholar
  68. 68.
    O. Buchmueller et al., The CMSSM and NUHM1 after LHC run 1. Eur. Phys. J. C 74, 2922 (2014). arXiv:1312.5250 ADSCrossRefGoogle Scholar
  69. 69.
    O. Buchmueller et al., The NUHM2 after LHC run 1. Eur. Phys. J. C 74, 3212 (2014). arXiv:1408.4060 CrossRefGoogle Scholar
  70. 70.
    E. Bagnaschi et al., Likelihood analysis of supersymmetric SU(5) GUTs. Eur. Phys. J. C 77, 104 (2017). arXiv:1610.10084
  71. 71.
    E. Bagnaschi et al., Likelihood analysis of the minimal AMSB model. Eur. Phys. J. C 77, 268 (2017). arXiv:1612.05210
  72. 72.
    B.C. Allanach, K. Cranmer, C.G. Lester, A.M. Weber, Natural priors. CMSSM fits and LHC weather forecasts. JHEP 08, 023 (2007). arXiv:0705.0487
  73. 73.
    S.S. Abdussalam, B.C. Allanach, F. Quevedo, F. Feroz, M. Hobson, Fitting the phenomenological MSSM. Phys. Rev. D 81, 095012 (2010). arXiv:0904.2548 ADSCrossRefGoogle Scholar
  74. 74.
    S.S. Abdussalam, B.C. Allanach, M.J. Dolan, F. Feroz, M.P. Hobson, Selecting a model of supersymmetry breaking mediation. Phys. Rev. D 80, 035017 (2009). arXiv:0906.0957 ADSCrossRefGoogle Scholar
  75. 75.
    B.C. Allanach, Impact of CMS multi-jets and missing energy search on CMSSM fits. Phys. Rev. D 83, 095019 (2011). arXiv:1102.3149 ADSCrossRefGoogle Scholar
  76. 76.
    B.C. Allanach, T.J. Khoo, C.G. Lester, S.L. Williams, The impact of ATLAS zero-lepton, jets and missing momentum search on a CMSSM fit. JHEP 6, 35 (2011). arXiv:1103.0969 ADSCrossRefGoogle Scholar
  77. 77.
    A. Fowlie, A. Kalinowski, M. Kazana, L. Roszkowski, Y.L.S. Tsai, Bayesian implications of current LHC and XENON100 search limits for the constrained MSSM. Phys. Rev. D 85, 075012 (2012). arXiv:1111.6098 ADSCrossRefGoogle Scholar
  78. 78.
    L. Roszkowski, E.M. Sessolo, Y.-L.S. Tsai, Bayesian implications of current LHC supersymmetry and dark matter detection searches for the constrained MSSM. Phys. Rev. D 86, 095005 (2012). arXiv:1202.1503 ADSCrossRefGoogle Scholar
  79. 79.
    C. Balázs, A. Buckley, D. Carter, B. Farmer, M. White, Should we still believe in constrained supersymmetry? Eur. Phys. J. C 73, 2563 (2013). arXiv:1205.1568 ADSCrossRefGoogle Scholar
  80. 80.
    M.E. Cabrera, J.A. Casas, R. Ruiz de Austri, The health of SUSY after the Higgs discovery and the XENON100 data. JHEP 07, 182 (2013). arXiv:1212.4821 ADSCrossRefGoogle Scholar
  81. 81.
    A. Fowlie, K. Kowalska, L. Roszkowski, E.M. Sessolo, Y.-L.S. Tsai, Dark matter and collider signatures of the MSSM. Phys. Rev. D 88, 055012 (2013). arXiv:1306.1567 ADSCrossRefGoogle Scholar
  82. 82.
    S. Henrot-Versillé, R. Lafaye et al., Constraining supersymmetry using the relic density and the Higgs boson. Phys. Rev. D 89, 055017 (2014). arXiv:1309.6958 ADSCrossRefGoogle Scholar
  83. 83.
    D. Kim, P. Athron, C. Balázs, B. Farmer, E. Hutchison, Bayesian naturalness of the CMSSM and CNMSSM. Phys. Rev. D 90, 055008 (2014). arXiv:1312.4150 ADSCrossRefGoogle Scholar
  84. 84.
    A. Fowlie, M. Raidal, Prospects for constrained supersymmetry at \(\sqrt{s}={33}\,\text{ TeV } \) and \(\sqrt{s}={100}\,\text{ TeV } \) proton-proton super-colliders. Eur. Phys. J. C 74, 2948 (2014). arXiv:1402.5419 ADSCrossRefGoogle Scholar
  85. 85.
    L. Roszkowski, E.M. Sessolo, A.J. Williams, What next for the CMSSM and the NUHM: improved prospects for superpartner and dark matter detection. JHEP 08, 067 (2014). arXiv:1405.4289 ADSCrossRefGoogle Scholar
  86. 86.
    K. Kowalska, L. Roszkowski, E.M. Sessolo, A.J. Williams, GUT-inspired SUSY and the muon \(g-2\) anomaly: prospects for LHC 14 TeV. JHEP 06, 020 (2015). arXiv:1503.08219
  87. 87.
    M.E. Cabrera, J.A. Casas, A. Delgado, S. Robles, R. Ruiz de Austri, Naturalness of MSSM dark matter. JHEP 08, 058 (2016). arXiv:1604.02102
  88. 88.
    C. Han, K.-I. Hikasa, L. Wu, J. M. Yang, Y. Zhang, Status of CMSSM in light of current LHC run-2 and LUX data. arXiv:1612.02296
  89. 89.
    C. Strege, G. Bertone et al., Profile likelihood maps of a 15-dimensional MSSM. JHEP 9, 81 (2014). arXiv:1405.0622 ADSCrossRefGoogle Scholar
  90. 90.
    P. Bechtle, J.E. Camargo-Molina et al., Killing the cMSSM softly. Eur. Phys. J. C 76, 96 (2016). arXiv:1508.05951
  91. 91.
    M.E. Cabrera-Catalan, S. Ando, C. Weniger, F. Zandanel, Indirect and direct detection prospect for TeV dark matter in the nine parameter MSSM. Phys. Rev. D 92, 035018 (2015). arXiv:1503.00599
  92. 92.
    K.J. de Vries, E.A. Bagnaschi et al., The pMSSM10 after LHC run 1. Eur. Phys. J. C 75, 422 (2015). arXiv:1504.03260
  93. 93.
    E.A. Bagnaschi, O. Buchmueller et al., Supersymmetric dark matter after LHC run 1. Eur. Phys. J. C 75, 500 (2015). arXiv:1508.01173
  94. 94.
    C. Balázs, D. Carter, Discovery potential of the next-to-minimal supergravity-motivated model. Phys. Rev. D 78, 055001 (2008). arXiv:0808.0770 ADSCrossRefGoogle Scholar
  95. 95.
    D.E. Lopez-Fogliani, L. Roszkowski, R.R. de Austri, T.A. Varley, A Bayesian analysis of the constrained NMSSM. Phys. Rev. D 80, 095013 (2009). arXiv:0906.4911 ADSCrossRefGoogle Scholar
  96. 96.
    K. Kowalska, S. Munir et al., Constrained next-to-minimal supersymmetric standard model with a 126 GeV Higgs boson: a global analysis. Phys. Rev. D 87, 115010 (2013). arXiv:1211.1693 ADSCrossRefGoogle Scholar
  97. 97.
    A. Fowlie, Is the CNMSSM more credible than the CMSSM? Eur. Phys. J. C 74, 3105 (2014). arXiv:1407.7534 CrossRefGoogle Scholar
  98. 98.
    G. Bertone, K. Kong, R.R. de Austri, R. Trotta, Global fits of the minimal universal extra dimensions scenario. Phys. Rev. D 83, 036008 (2011). arXiv:1010.2023 ADSCrossRefGoogle Scholar
  99. 99.
    K. Cheung, Y.-L.S. Tsai, P.-Y. Tseng, T.-C. Yuan, A. Zee, Global study of the simplest scalar phantom dark matter model. JCAP 1210, 042 (2012). arXiv:1207.4930 ADSCrossRefGoogle Scholar
  100. 100.
    A. Arhrib, Y.-L.S. Tsai, Q. Yuan, T.-C. Yuan, An updated analysis of inert Higgs doublet model in light of the recent results from LUX, PLANCK, AMS-02 and LHC. JCAP 1406, 030 (2014). arXiv:1310.0358 ADSCrossRefGoogle Scholar
  101. 101.
    S. Matsumoto, S. Mukhopadhyay, Y.-L.S. Tsai, Singlet Majorana fermion dark matter: a comprehensive analysis in effective field theory. JHEP 10, 155 (2014). arXiv:1407.1859 ADSCrossRefGoogle Scholar
  102. 102.
    D. Chowdhury, O. Eberhardt, Global fits of the two-loop renormalized two-Higgs-doublet model with soft Z \(_{2}\) breaking. JHEP 11, 52 (2015). arXiv:1503.08216
  103. 103.
    S. Liem, G. Bertone et al., Effective field theory of dark matter: a global analysis. JHEP 9, 77 (2016). arXiv:1603.05994
  104. 104.
    X. Huang, Y.-L .S. Tsai, Q. Yuan, LikeDM: likelihood calculator of dark matter detection. Comput. Phys. Commun. 213, 252–263 (2017). arXiv:1603.07119
  105. 105.
    S. Banerjee, S. Matsumoto, K. Mukaida, Y.-L.S. Tsai, WIMP dark matter in a well-tempered regime: a case study on singlet-doublets Fermionic WIMP. JHEP 11, 070 (2016). arXiv:1603.07387
  106. 106.
    S. Matsumoto, S. Mukhopadhyay, Y.-L.S. Tsai, Effective theory of WIMP dark matter supplemented by simplified models: singlet-like Majorana fermion case. Phys. Rev. D 94, 065034 (2016). arXiv:1604.02230
  107. 107.
    A. Cuoco, B. Eiteneuer, J. Heisig, M. Krämer, A global fit of the \(\gamma \)-ray galactic center excess within the scalar singlet Higgs portal model. JCAP 6, 050 (2016). arXiv:1603.08228
  108. 108.
    GAMBIT Collider Workgroup: C. Balázs, A. Buckley et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. arXiv:1705.07919
  109. 109.
    GAMBIT Flavour Workgroup, F. U. Bernlochner, M. Chrzaszcz et al., FlavBit: a GAMBIT module for computing flavour observables and likelihoods. arXiv:1705.07933
  110. 110.
    GAMBIT Dark Matter Workgroup, T. Bringmann, J. Conrad et al., DarkBit: a GAMBIT module for computing dark matter observables and likelihoods. arXiv:1705.07920
  111. 111.
    GAMBIT Models Workgroup, P. Athron, C. Balázs et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. arXiv:1705.07936
  112. 112.
    GAMBIT Scanner Workgroup, G. D. Martinez, J. McKay et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. arXiv:1705.07959
  113. 113.
    R. Ruiz de Austri, R. Trotta, F. Feroz, SuperBayeS. http://www.superbayes.org
  114. 114.
    Y. Akrami, P. Scott, J. Edsjö, J. Conrad, L. Bergström, A profile likelihood analysis of the constrained MSSM with genetic algorithms. JHEP 4, 57 (2010). arXiv:0910.3950 ADSzbMATHCrossRefGoogle Scholar
  115. 115.
    F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri, R. Trotta, Challenges of profile likelihood evaluation in multi-dimensional SUSY scans. JHEP 6, 42 (2011). arXiv:1101.3296 ADSzbMATHCrossRefGoogle Scholar
  116. 116.
    Y. Akrami, C. Savage, P. Scott, J. Conrad, J. Edsjö, Statistical coverage for supersymmetric parameter estimation: a case study with direct detection of dark matter. JCAP 7, 2 (2011). arXiv:1011.4297 ADSCrossRefGoogle Scholar
  117. 117.
    C. Strege, R. Trotta, G. Bertone, A.H.G. Peter, P. Scott, Fundamental statistical limitations of future dark matter direct detection experiments. Phys. Rev. D 86, 023507 (2012). arXiv:1201.3631 ADSCrossRefGoogle Scholar
  118. 118.
    C.F. Berger, J.S. Gainer, J.A.L. Hewett, T.G. Rizzo, Supersymmetry without prejudice. JHEP 2, 23 (2009). arXiv:0812.0980
  119. 119.
    GAMBIT Collaboration, P. Athron, C. Balázs et al., Global fits of GUT-scale SUSY models with GAMBIT. arXiv:1705.07935
  120. 120.
    GAMBIT Collaboration, P. Athron, C. Balázs et al., A global fit of the MSSM with GAMBIT. arXiv:1705.07917
  121. 121.
    GAMBIT Collaboration, P. Athron, C. Balázs et al., Status of the scalar singlet dark matter model. arXiv:1705.07931
  122. 122.
    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 ADSCrossRefGoogle Scholar
  123. 123.
    P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY—a spectrum generator generator for supersymmetric models. Comput. Phys. Commun. 190, 139–172 (2015). arXiv:1406.2319 ADSCrossRefGoogle Scholar
  124. 124.
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002). arXiv:hep-ph/0104145 ADSzbMATHCrossRefGoogle Scholar
  125. 125.
    T. Sjostrand, S. Ask et al., An introduction to PYTHIA 8.2. Comput. Phys. Commum. 191, 159–177 (2015). arXiv:1410.3012
  126. 126.
    S. Ovyn, X. Rouby, V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment. arXiv:0903.2225
  127. 127.
    J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment. JHEP 1402, 057 (2014). arXiv:1307.6346 CrossRefGoogle Scholar
  128. 128.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the tevatron. Comput. Phys. Commun. 181, 138–167 (2010). arXiv:0811.4169 ADSzbMATHCrossRefGoogle Scholar
  129. 129.
    P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K.E. Williams, HiggsBounds 2.0.0: confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the tevatron. Comput. Phys. Commun. 182, 2605–2631 (2011). arXiv:1102.1898 ADSzbMATHCrossRefGoogle Scholar
  130. 130.
    P. Bechtle, O. Brein et al., \({ HiggsBounds}-4\): improved tests of extended Higgs sectors against exclusion bounds from LEP, the tevatron and the LHC. Eur. Phys. J. C 74, 2693 (2014). arXiv:1311.0055 ADSCrossRefGoogle Scholar
  131. 131.
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the tevatron and the LHC. Eur. Phys. J. C 74, 2711 (2014). arXiv:1305.1933 ADSCrossRefGoogle Scholar
  132. 132.
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, MadGraph 5: going beyond. JHEP 06, 128 (2011). arXiv:1106.0522 ADSzbMATHCrossRefGoogle Scholar
  133. 133.
    J. Alwall, R. Frederix et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. JHEP 07, 079 (2014). arXiv:1405.0301 ADSCrossRefGoogle Scholar
  134. 134.
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of \(B \rightarrow K^* \gamma \) in the MSSM. Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067 ADSzbMATHCrossRefGoogle Scholar
  135. 135.
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry. Comput. Phys. Commun. 180, 1579 (2009). arXiv:0808.3144 ADSCrossRefGoogle Scholar
  136. 136.
    F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: extension to NMSSM. Comput. Phys. Commun. 180, 1718 (2009)ADSCrossRefGoogle Scholar
  137. 137.
    H. Bahl, S. Heinemeyer, W. Hollik, G. Weiglein, Reconciling EFT and hybrid calculations of the light MSSM Higgs-boson mass. arXiv:1706.00346
  138. 138.
    H. Bahl, W. Hollik, Precise prediction for the light MSSM Higgs boson mass combining effective field theory and fixed-order calculations. Eur. Phys. J. C 76, 499 (2016). arXiv:1608.01880
  139. 139.
    T. Hahn, S. Heinemeyer, W. Hollik, H. Rzehak, G. Weiglein, High-precision predictions for the light CP-even Higgs boson mass of the minimal supersymmetric standard model. Phys. Rev. Lett. 112, 141801 (2014). arXiv:1312.4937 ADSCrossRefGoogle Scholar
  140. 140.
    M. Frank, T. Hahn et al., The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach. JHEP 02, 047 (2007). arXiv:hep-ph/0611326 ADSCrossRefGoogle Scholar
  141. 141.
    G. Degrassi, S. Heinemeyer, W. Hollik, P. Slavich, G. Weiglein, Towards high precision predictions for the MSSM Higgs sector. Eur. Phys. J. C 28, 133–143 (2003). arXiv:hep-ph/0212020 ADSCrossRefGoogle Scholar
  142. 142.
    S. Heinemeyer, W. Hollik, G. Weiglein, The masses of the neutral CP-even Higgs bosons in the MSSM: accurate analysis at the two loop level. Eur. Phys. J. C 9, 343–366 (1999). arXiv:hep-ph/9812472 ADSzbMATHGoogle Scholar
  143. 143.
    S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM. Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320 ADSzbMATHCrossRefGoogle Scholar
  144. 144.
    F. Mahmoudi, S. Neshatpour, J. Virto, \(B \rightarrow K^{*} \mu ^{+} \mu ^{-}\) optimised observables in the MSSM. Eur. Phys. J. C 74, 2927 (2014). arXiv:1401.2145 ADSCrossRefGoogle Scholar
  145. 145.
    W. Altmannshofer, D.M. Straub, New physics in \(B \rightarrow K^*\mu \mu \)? Eur. Phys. J. C 73, 2646 (2013). arXiv:1308.1501 ADSCrossRefGoogle Scholar
  146. 146.
    S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, Global analysis of \(b\rightarrow s\ell \ell \) anomalies. JHEP 06, 092 (2016). arXiv:1510.04239
  147. 147.
    P. Gondolo, J. Edsjö et al., DarkSUSY: computing supersymmetric dark matter properties numerically. JCAP 7, 8 (2004). arXiv:astro-ph/0406204 ADSCrossRefGoogle Scholar
  148. 148.
    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, MicrOMEGAs: a program for calculating the relic density in the MSSM. Comput. Phys. Commun. 149, 103–120 (2002). arXiv:hep-ph/0112278 ADSzbMATHCrossRefGoogle Scholar
  149. 149.
    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs: version 1.3. Comput. Phys. Commun. 174, 577–604 (2006). arXiv:hep-ph/0405253
  150. 150.
    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, MicrOMEGAs 2.0: a program to calculate the relic density of dark matter in a generic model. Comput. Phys. Commun. 176, 367–382 (2007). arXiv:hep-ph/0607059 ADSzbMATHCrossRefGoogle Scholar
  151. 151.
    G. Bélanger, F. Boudjema et al., Indirect search for dark matter with micrOMEGAs2.4. Comput. Phys. Commun. 182, 842–856 (2011). arXiv:1004.1092 ADSzbMATHCrossRefGoogle Scholar
  152. 152.
    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs 3: a program for calculating dark matter observables. Comput. Phys. Commun. 185, 960–985 (2014). arXiv:1305.0237 ADSCrossRefGoogle Scholar
  153. 153.
    G. Bélanger, F. Boudjema, A. Pukhov, A. Semenov, micrOMEGAs4.1: two dark matter candidates. Comput. Phys. Commun. 192, 322–329 (2015). arXiv:1407.6129
  154. 154.
    W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at \(e^+e^-\) colliders. Comput. Phys. Commun. 153, 275–315 (2003). arXiv:hep-ph/0301101 ADSCrossRefGoogle Scholar
  155. 155.
    W. Porod, F. Staub, SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM. Comput. Phys. Commun. 183, 2458–2469 (2012). arXiv:1104.1573 ADSCrossRefGoogle Scholar
  156. 156.
    B.C. Allanach, M.A. Bernhardt, Including R-parity violation in the numerical computation of the spectrum of the minimal supersymmetric standard model: SOFTSUSY. Comput. Phys. Commun. 181, 232–245 (2010). arXiv:0903.1805 ADSzbMATHCrossRefGoogle Scholar
  157. 157.
    B.C. Allanach, C.H. Kom, M. Hanussek, Computation of neutrino masses in R-parity violating supersymmetry: SOFTSUSY3.2. Comput. Phys. Commun. 183, 785–793 (2012). arXiv:1109.3735 ADSCrossRefGoogle Scholar
  158. 158.
    B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt, A.G. Williams, Next-to-minimal SOFTSUSY. Comput. Phys. Commun. 185, 2322–2339 (2014). arXiv:1311.7659 ADSzbMATHCrossRefGoogle Scholar
  159. 159.
    B.C. Allanach, A. Bednyakov, R. Ruiz de Austri, Higher order corrections and unification in the minimal supersymmetric standard model: SOFTSUSY3.5. Comput. Phys. Commun. 189, 192–206 (2015). arXiv:1407.6130 ADSzbMATHCrossRefGoogle Scholar
  160. 160.
    A. Djouadi, M.M. Mühlleitner, M. Spira, Decays of supersymmetric particles: the program SUSY-HIT (SUspect-SdecaY-Hdecay-InTerface). Acta Phys. Polon. 38, 635–644 (2007). arXiv:hep-ph/0609292 ADSGoogle Scholar
  161. 161.
    M. Muhlleitner, A. Djouadi, Y. Mambrini, SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM. Comput. Phys. Commun. 168, 46–70 (2005). arXiv:hep-ph/0311167 ADSCrossRefGoogle Scholar
  162. 162.
    A. Djouadi, J.-L. Kneur, G. Moultaka, SuSpect: a Fortran code for the supersymmetric and Higgs particle spectrum in the MSSM. Comput. Phys. Commun. 176, 426–455 (2007). arXiv:hep-ph/0211331 ADSzbMATHCrossRefGoogle Scholar
  163. 163.
    A. Djouadi, J. Kalinowski, M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun. 108, 56–74 (1998). arXiv:hep-ph/9704448 ADSzbMATHCrossRefGoogle Scholar
  164. 164.
    P. Athron, M. Bach et al., GM2Calc: precise MSSM prediction for (g-2) of the muon. Eur. Phys. J. C 76, 62 (2016). arXiv:1510.08071
  165. 165.
    Message Passing Forum, MPI: A Message-Passing Interface Standard (University of Tennessee, Knoxville, 1994)Google Scholar
  166. 166.
    L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory programming. IEEE Comput. Sci. Eng. 5, 46–55 (1998)CrossRefGoogle Scholar
  167. 167.
    B.C. Allanach et al., SUSY Les Houches accord 2. Comput. Phys. Commun. 180, 8–25 (2009). arXiv:0801.0045 ADSCrossRefGoogle Scholar
  168. 168.
    H. Baer, X. Tata, Weak Scale Supersymmetry (Cambridge University Press, Cambridge, 2006)zbMATHCrossRefGoogle Scholar
  169. 169.
    H. Silverwood, P. Scott et al., Sensitivity of IceCube-DeepCore to neutralino dark matter in the MSSM-25. JCAP 3, 27 (2013). arXiv:1210.0844 ADSCrossRefGoogle Scholar
  170. 170.
    R.C. Cotta, A. Drlica-Wagner et al., Constraints on the pMSSM from LAT observations of dwarf spheroidal galaxies. JCAP 4, 16 (2012). arXiv:1111.2604 ADSCrossRefGoogle Scholar
  171. 171.
    J.A. Conley, J.S. Gainer, J.L. Hewett, M.P. Le, T.G. Rizzo, Supersymmetry without prejudice at the LHC. Eur. Phys. J. C 71, 1697 (2011). arXiv:1009.2539 ADSCrossRefGoogle Scholar
  172. 172.
    A. Arbey, M. Battaglia, F. Mahmoudi, Implications of LHC searches on SUSY particle spectra. The pMSSM parameter space with neutralino dark matter. Eur. Phys. J. C 72, 1847 (2012). arXiv:1110.3726 ADSCrossRefGoogle Scholar
  173. 173.
    L. Bergström, P. Gondolo, Limits on direct detection of neutralino dark matter from \(b\rightarrow s\gamma \) decays. Astropart. Phys. 5, 263–278 (1996). arXiv:hep-ph/9510252 ADSCrossRefGoogle Scholar
  174. 174.
    M. Berg, J. Edsjö, P. Gondolo, E. Lundström, S. Sjörs, Neutralino dark matter in BMSSM effective theory. JCAP 8, 35 (2009). arXiv:0906.0583 ADSCrossRefGoogle Scholar
  175. 175.
    E. Dudas, Y. Mambrini, A. Mustafayev, K.A. Olive, Relating the CMSSM and SUGRA models with GUT scale and super-GUT scale supersymmetry breaking. Eur. Phys. J. C 72, 2138 (2012). arXiv:1205.5988. [Erratum: Eur. Phys. J. C 73, 2430 (2013)]
  176. 176.
    Y. Akrami, C. Savage, P. Scott, J. Conrad, J. Edsjö, How well will ton-scale dark matter direct detection experiments constrain minimal supersymmetry? JCAP 1104, 012 (2011). arXiv:1011.4318 ADSCrossRefGoogle Scholar
  177. 177.
    R. Schoenrich, J. Binney, W. Dehnen, Local kinematics and the local standard of rest. MNRAS 403, 1829 (2010). arXiv:0912.3693 ADSCrossRefGoogle Scholar
  178. 178.
    J.R. Ellis, K.A. Olive, C. Savage, Hadronic uncertainties in the elastic scattering of supersymmetric dark matter. Phys. Rev. D 77, 065026 (2008). arXiv:0801.3656 ADSCrossRefGoogle Scholar
  179. 179.
    R. D. Young, Strange quark content of the nucleon and dark matter searches. PoS LATTICE2012, 014 (2012). arXiv:1301.1765
  180. 180.
    P.Z. Skands et al., SUSY Les Houches accord: interfacing SUSY spectrum calculators, decay packages, and event generators. JHEP 07, 036 (2004). arXiv:hep-ph/0311123 ADSCrossRefGoogle Scholar
  181. 181.
    P. Scott, Pippi—painless parsing, post-processing and plotting of posterior and likelihood samples. Eur. Phys. J. Plus 127, 138 (2012). arXiv:1206.2245 CrossRefGoogle Scholar
  182. 182.
    F. Feroz, M.P. Hobson, M. Bridges, MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. MNRAS 398, 1601–1614 (2009). arXiv:0809.3437 ADSCrossRefGoogle Scholar
  183. 183.
    A. Putze, L. Derome, The Grenoble Analysis Toolkit (GreAT)—a statistical analysis framework. Phys. Dark Univ. 5, 29–34 (2014)CrossRefGoogle Scholar
  184. 184.
    A. Lewis, Efficient sampling of fast and slow cosmological parameters. Phys. Rev. D 87, 103529 (2013). arXiv:1304.4473 ADSCrossRefGoogle Scholar
  185. 185.
    A. Lewis, S. Bridle, Cosmological parameters from CMB and other data: a Monte Carlo approach. Phys. Rev. D 66, 103511 (2002). arXiv:astro-ph/0205436 ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3

Authors and Affiliations

  • The GAMBIT Collaboration
  • Peter Athron
    • 1
    • 2
  • Csaba Balazs
    • 1
    • 2
  • Torsten Bringmann
    • 3
  • Andy Buckley
    • 4
  • Marcin Chrząszcz
    • 5
    • 6
  • Jan Conrad
    • 7
    • 8
  • Jonathan M. Cornell
    • 9
  • Lars A. Dal
    • 3
  • Hugh Dickinson
    • 10
  • Joakim Edsjö
    • 7
    • 8
  • Ben Farmer
    • 7
    • 8
  • Tomás E. Gonzalo
    • 3
  • Paul Jackson
    • 2
    • 11
  • Abram Krislock
    • 3
  • Anders Kvellestad
    • 12
  • Johan Lundberg
    • 7
    • 8
  • James McKay
    • 13
  • Farvah Mahmoudi
    • 14
    • 15
  • Gregory D. Martinez
    • 16
  • Antje Putze
    • 17
  • Are Raklev
    • 3
  • Joachim Ripken
    • 18
  • Christopher Rogan
    • 19
  • Aldo Saavedra
    • 2
    • 20
  • Christopher Savage
    • 12
  • Pat Scott
    • 13
  • Seon-Hee Seo
    • 21
  • Nicola Serra
    • 5
  • Christoph Weniger
    • 22
  • Martin White
    • 2
    • 11
  • Sebastian Wild
    • 23
  1. 1.School of Physics and AstronomyMonash UniversityMelbourneAustralia
  2. 2.Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Australia
  3. 3.Department of PhysicsUniversity of OsloOsloNorway
  4. 4.SUPA, School of Physics and AstronomyUniversity of GlasgowGlasgowUK
  5. 5.Physik-InstitutUniversität ZürichZurichSwitzerland
  6. 6.H. Niewodniczański Institute of Nuclear PhysicsPolish Academy of SciencesKrakówPoland
  7. 7.Oskar Klein Centre for Cosmoparticle PhysicsAlbaNova University CentreStockholmSweden
  8. 8.Department of PhysicsStockholm UniversityStockholmSweden
  9. 9.Department of PhysicsMcGill UniversityMontrealCanada
  10. 10.Minnesota Institute for AstrophysicsUniversity of MinnesotaMinneapolisUSA
  11. 11.Department of PhysicsUniversity of AdelaideAdelaideAustralia
  12. 12.NORDITAStockholmSweden
  13. 13.Department of PhysicsImperial College London, Blackett LaboratoryLondonUK
  14. 14.Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574Saint-Genis-LavalFrance
  15. 15.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  16. 16.Physics and Astronomy DepartmentUniversity of CaliforniaLos AngelesUSA
  17. 17.LAPTh, Université de Savoie, CNRSAnnecy-le-VieuxFrance
  18. 18.Max Planck Institute for Solar System ResearchGöttingenGermany
  19. 19.Department of PhysicsHarvard UniversityCambridgeUSA
  20. 20.Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of PhysicsThe University of SydneySydneyAustralia
  21. 21.Department of Physics and AstronomySeoul National UniversitySeoulKorea
  22. 22.GRAPPA, Institute of PhysicsUniversity of AmsterdamAmsterdamThe Netherlands
  23. 23.DESYHamburgGermany

Personalised recommendations