FlavBit: a GAMBIT module for computing flavour observables and likelihoods

  • The GAMBIT Flavour Workgroup:
  • Florian U. Bernlochner
  • Marcin Chrząszcz
  • Lars A. Dal
  • Ben Farmer
  • Paul Jackson
  • Anders Kvellestad
  • Farvah Mahmoudi
  • Antje Putze
  • Christopher Rogan
  • Pat Scott
  • Nicola Serra
  • Christoph Weniger
  • Martin White
Open Access
Special Article - Tools for Experiment and Theory


Flavour physics observables are excellent probes of new physics up to very high energy scales. Here we present FlavBit, the dedicated flavour physics module of the global-fitting package GAMBIT. FlavBit includes custom implementations of various likelihood routines for a wide range of flavour observables, including detailed uncertainties and correlations associated with LHCb measurements of rare, leptonic and semileptonic decays of B and D mesons, kaons and pions. It provides a generalised interface to external theory codes such as SuperIso, allowing users to calculate flavour observables in and beyond the Standard Model, and then test them in detail against all relevant experimental data. We describe FlavBit and its constituent physics in some detail, then give examples from supersymmetry and effective field theory illustrating how it can be used both as a standalone library for flavour physics, and within GAMBIT.



We thank our colleagues within GAMBIT for many helpful discussions. We warmly thank the Casa Matemáticas Oaxaca, affiliated with the Banff International Research Station, for hospitality whilst part of this work was completed, and the staff at Cyfronet, for their always helpful supercomputing support. GAMBIT has been supported by STFC (UK; ST/K00414X/1, ST/P000762/1), the Royal Society (UK; UF110191), Glasgow University (UK; Leadership Fellowship), the Research Council of Norway (FRIPRO 230546/F20), NOTUR (Norway; NN9284K), the Knut and Alice Wallenberg Foundation (Sweden; Wallenberg Academy Fellowship), the Swedish Research Council (621-2014-5772), the Australian Research Council (CE110001004, FT130100018, FT140100244, FT160100274), The University of Sydney (Australia; IRCA-G162448), PLGrid Infrastructure (Poland), Polish National Science Center (Sonata UMO-2015/17/D/ST2/03532), the Swiss National Science Foundation (PP00P2-144674), the European Commission Horizon 2020 Marie Skłodowska-Curie actions (H2020-MSCA-RISE-2015-691164), the ERA-CAN+ Twinning Program (EU & Canada), the Netherlands Organisation for Scientific Research (NWO-Vidi 680-47-532), the National Science Foundation (USA; DGE-1339067), the FRQNT (Québec) and NSERC/The Canadian Tri-Agencies Research Councils (BPDF-424460-2012).


  1. 1.
    N. Serra, R. Silva, Coutinho, D. van Dyk, Measuring the breaking of lepton flavor universality in \(B\rightarrow K^*\ell ^+\ell ^-\). Phys. Rev. D 95, 035029 (2017). arXiv:1610.08761
  2. 2.
    D. Straub, flav-io/flavio v0.20.3 (2017).
  3. 3.
    E.L. Silvestrini, HEPfit: a code for the combination of indirect and direct constraints on high energy physics models (2017).
  4. 4.
    GAMBIT Collaboration: P. Athron, C. Balazs et al., GAMBIT: the global and modular beyond-the-standard-model inference tool. Eur. Phys. J. C (2017). arXiv:1705.07908
  5. 5.
    F. Mahmoudi, SuperIso: a program for calculating the isospin asymmetry of \(B \rightarrow K^* \gamma \) in the MSSM. Comput. Phys. Commun. 178, 745 (2008). arXiv:0710.2067 ADSCrossRefMATHGoogle Scholar
  6. 6.
    F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in supersymmetry. Comput. Phys. Commun. 180, 1579 (2009). arXiv:0808.3144 ADSCrossRefGoogle Scholar
  7. 7.
    F. Mahmoudi, SuperIso v3.0, flavor physics observables calculations: extension to NMSSM. Comput. Phys. Commun. 180, 1718 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    GAMBIT Scanner Workgroup: G.D. Martinez, J. McKay et al., Comparison of statistical sampling methods with ScannerBit, the GAMBIT scanning module. Eur. Phys. J. C (2017). arXiv:1705.07959
  9. 9.
    GAMBIT Collaboration: P. Athron, C. Balázs et al., Status of the scalar singlet dark matter model. Eur. Phys. J. C 77(8), 568 (2017). arXiv:1705.07931
  10. 10.
    GAMBIT Collaboration: P. Athron, C. Balázs et al., Global fits of GUT-scale SUSY models with GAMBIT. arXiv:1705.07935
  11. 11.
    GAMBIT Collaboration: P. Athron, C. Balázs et al., A global fit of the MSSM with GAMBIT. Eur. Phys. J. C (2017). arXiv:1705.07917
  12. 12.
    GAMBIT Collider Workgroup: C. Balázs, A. Buckley et al., ColliderBit: a GAMBIT module for the calculation of high-energy collider observables and likelihoods. Eur. Phys. J. C (2017). arXiv:1705.07919
  13. 13.
    GAMBIT Dark Matter Workgroup: T. Bringmann, J. Conrad et al., DarkBit: a GAMBIT module for computing dark matter observables and likelihoods. Eur. Phys. J. C (2017). arXiv:1705.07920
  14. 14.
    GAMBIT Models Workgroup: P. Athron, C. Balázs et al., SpecBit, DecayBit and PrecisionBit: GAMBIT modules for computing mass spectra, particle decay rates and precision observables. Eur. Phys. J. C (2017). arXiv:1705.07936
  15. 15.
    LHCb Collaboration: R. Aaij et al., Angular analysis and differential branching fraction of the decay \(B^0_s\rightarrow \phi \mu ^+\mu ^-\). JHEP 09, 179 (2015). arXiv:1506.08777
  16. 16.
    LHCb Collaboration: R. Aaij et al., Measurement of the ratio of branching fractions \({\cal{B}} (\bar{B}^0 \rightarrow D^{*+}\tau ^{-}\bar{\nu }_{\tau })/{\cal{B}} (\bar{B}^0 \rightarrow D^{*+}\mu ^{-}\bar{\nu }_{\mu })\). Phys. Rev. Lett. 115, 111803 (2015). arXiv:1506.08614 [Addendum: Phys. Rev. Lett. 115(15), 159901 (2015)]
  17. 17.
    LHCb Collaboration: R. Aaij et al., Test of lepton universality using \(B^{+}\rightarrow K^{+}\ell ^{+}\ell ^{-}\) decays. Phys. Rev. Lett. 113, 151601 (2014). arXiv:1406.6482
  18. 18.
    LHCb Collaboration: R. Aaij et al., Measurement of form-factor-independent observables in the decay \(B^{0} \rightarrow K^{*0} \mu ^+ \mu ^-\). Phys. Rev. Lett. 111, 191801 (2013). arXiv:1308.1707
  19. 19.
    BaBar Collaboration: J.P. Lees et al., Evidence for an excess of \(\bar{B} \rightarrow D^{(*)} \tau ^-\bar{\nu }_\tau \) decays. Phys. Rev. Lett. 109, 101802 (2012). arXiv:1205.5442
  20. 20.
    BaBar Collaboration: J.P. Lees et al., Measurement of an excess of \(\bar{B} \rightarrow D^{(*)}\tau ^-\bar{\nu }_\tau \) decays and implications for charged Higgs bosons. Phys. Rev. D 88, 072012 (2013). arXiv:1303.0571
  21. 21.
    Belle Collaboration: M. Huschle et al., Measurement of the branching ratio of \(\bar{B} \rightarrow D^{(\ast )} \tau ^- \bar{\nu }_\tau \) relative to \(\bar{B} \rightarrow D^{(\ast )} \ell ^- \bar{\nu }_\ell \) decays with hadronic tagging at Belle. Phys. Rev. D 92, 072014 (2015). arXiv:1507.03233
  22. 22.
    Belle Collaboration: A. Abdesselam et al., Measurement of the branching ratio of \(\bar{B}^0 \rightarrow D^{*+} \tau ^- \bar{\nu }_{\tau }\) relative to \(\bar{B}^0 \rightarrow D^{*+} \ell ^- \bar{\nu }_{\ell }\) decays with a semileptonic tagging method. In: Proceedings, 51st Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy (2016). arXiv:1603.06711
  23. 23.
    Belle Collaboration: A. Abdesselam et al., Angular analysis of \(B^0 \rightarrow K^\ast (892)^0 \ell ^+ \ell ^-\), in Proceedings, LHCSki 2016—A First Discussion of 13 TeV Results: Obergurgl, Austria, April 10–15, 2016 (2016) arXiv:1604.04042
  24. 24.
    M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual. Eur. Phys. J. C 72, 1896 (2012). arXiv:1111.6097 ADSCrossRefGoogle Scholar
  25. 25.
    P. Athron, J.-H. Park, D. Stöckinger, A. Voigt, FlexibleSUSY—a spectrum generator generator for supersymmetric models. Comput. Phys. Commun. 190, 139–172 (2015). arXiv:1406.2319 ADSCrossRefGoogle Scholar
  26. 26.
    B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra. Comput. Phys. Commun. 143, 305–331 (2002). arXiv:hep-ph/0104145 ADSCrossRefMATHGoogle Scholar
  27. 27.
    S. Heinemeyer, W. Hollik, G. Weiglein, FeynHiggs: a program for the calculation of the masses of the neutral CP even Higgs bosons in the MSSM. Comput. Phys. Commun. 124, 76–89 (2000). arXiv:hep-ph/9812320 ADSCrossRefMATHGoogle Scholar
  28. 28.
    Particle Data Group: C. Patrignani et al., Review of particle physics. Chin. Phys. C 40, 100001 (2016)Google Scholar
  29. 29.
    Y. Sakaki, M. Tanaka, A. Tayduganov, R. Watanabe, Testing leptoquark models in \(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu }\). Phys. Rev. D 88, 094012 (2013). arXiv:1309.0301 ADSCrossRefGoogle Scholar
  30. 30.
    A. Crivellin, J. Heeck, P. Stoffer, A perturbed lepton-specific two-Higgs-doublet model facing experimental hints for physics beyond the Standard Model. Phys. Rev. Lett. 116, 081801 (2016). arXiv:1507.07567
  31. 31.
    M. Freytsis, Z. Ligeti, J.T. Ruderman, Flavor models for \(\bar{B} \rightarrow D^{(*)} \tau \bar{\nu }\). Phys. Rev. D 92, 054018 (2015). arXiv:1506.08896
  32. 32.
    A.J. Buras, J. Girrbach, Towards the identification of new physics through quark flavour violating processes. Rep. Prog. Phys. 77, 086201 (2014). arXiv:1306.3775 ADSCrossRefGoogle Scholar
  33. 33.
    O. Eberhardt, U. Nierste, M. Wiebusch, Status of the two-Higgs-doublet model of type II. JHEP 07, 118 (2013). arXiv:1305.1649 ADSCrossRefGoogle Scholar
  34. 34.
    D. Das, C. Hati, G. Kumar, N. Mahajan, Towards a unified explanation of \(R_{D^{(\ast )}}\), \(R_{K}\) and \((g-2)_{\mu }\) anomalies in a L-R model. Phys. Rev. D 94, 055034 (2016). arXiv:1605.06313
  35. 35.
    A. Greljo, G. Isidori, D. Marzocca, On the breaking of lepton flavor universality in B decays. JHEP 07, 142 (2015). arXiv:1506.01705
  36. 36.
    S.M. Boucenna, A. Celis, J. Fuentes-Martin, A. Vicente, J. Virto, Phenomenology of an \(SU(2) \times SU(2) \times U(1)\) model with lepton-flavour non-universality. JHEP 059, 1612 (2016). arXiv:1608.01349
  37. 37.
    D. Becirevic, N. Kosnik, O. Sumensari, R. Zukanovich Funchal, Palatable leptoquark scenarios for lepton flavor violation in exclusive \(b\rightarrow s\ell _1\ell _2\) modes. JHEP 035, 1611 (2016). arXiv:1608.07583
  38. 38.
    I. Dorsner, S. Fajfer, A. Greljo, J.F. Kamenik, N. Kosnik, Physics of leptoquarks in precision experiments and at particle colliders. Phys. Rep. 641, 1–68 (2016). arXiv:1603.04993
  39. 39.
    UTfit Collaboration: M. Bona et al., An improved standard model prediction of BR(\(B \rightarrow \tau \nu \)) and its implications for new physics. Phys. Lett. B 687, 61–69 (2010). arXiv:0908.3470
  40. 40.
    A.G. Akeroyd, F. Mahmoudi, Constraints on charged Higgs bosons from \(D_{(s)}^\pm \rightarrow \mu ^\pm \nu \) and \(D_{(s)}^\pm \rightarrow \tau ^\pm \nu \). JHEP 04, 121 (2009). arXiv:0902.2393 ADSCrossRefGoogle Scholar
  41. 41.
    M. Beneke, T. Feldmann, D. Seidel, Systematic approach to exclusive \(B \rightarrow V l^+ l^-\), \(V \gamma \) decays. Nucl. Phys. B 612, 25–58 (2001). arXiv:hep-ph/0106067 ADSCrossRefGoogle Scholar
  42. 42.
    C. Greub, A. Ioannisian, D. Wyler, Effects of new physics in the rare decays \(B \rightarrow K l^+ l^-\) and \(B \rightarrow K^* l^+ l^-\). Phys. Lett. B 346, 149–158 (1995). arXiv:hep-ph/9408382 ADSCrossRefGoogle Scholar
  43. 43.
    F. Kruger, L.M. Sehgal, Lepton polarization in the decays \(b \rightarrow X_{(s)} \mu ^+ \mu ^-\) and \(B \rightarrow X_{(s)} \tau ^+ \tau ^-\). Phys. Lett. B 380, 199–204 (1996). arXiv:hep-ph/9603237 ADSCrossRefGoogle Scholar
  44. 44.
    G. Hiller, F. Kruger, More model independent analysis of \(b \rightarrow s\) processes. Phys. Rev. D 69, 074020 (2004). arXiv:hep-ph/0310219 ADSCrossRefGoogle Scholar
  45. 45.
    LHCb Collaboration: R. Aaij et al., Differential branching fraction and angular analysis of the decay \(B^{0} \rightarrow K^{*0} \mu ^{+}\mu ^{-}\). JHEP 08, 131 (2013). arXiv:1304.6325
  46. 46.
    J. Gratrex, M. Hopfer, R. Zwicky, Generalised helicity formalism, higher moments and the \(B \rightarrow K_{J_K}(\rightarrow K \pi ) \bar{\ell }_1 \ell _2\) angular distributions. Phys. Rev. D 93, 054008 (2016). arXiv:1506.03970
  47. 47.
    LHCb Collaboration: R. Aaij et al., Angular analysis of the \(B^{0} \rightarrow K^{*0} \mu ^{+} \mu ^{-}\) decay using 3 fb\(^{-1}\) of integrated luminosity. JHEP 02, 104 (2016). arXiv:1512.04442
  48. 48.
    F. Beaujean, M. ChrzÄ\(\check{{\rm E}}\)szcz, N. Serra, D. van Dyk, Extracting angular observables without a likelihood and applications to rare decays. Phys. Rev. D 91, 114012 (2015). arXiv:1503.04100
  49. 49.
    W. Altmannshofer, P. Ball et al., Symmetries and asymmetries of \(B \rightarrow K^{*} \mu ^{+} \mu ^{-}\) decays in the standard model and beyond. JHEP 01, 019 (2009). arXiv:0811.1214 ADSCrossRefGoogle Scholar
  50. 50.
    S. Descotes-Genon, T. Hurth, J. Matias, J. Virto, Optimizing the basis of \(B\rightarrow K^*ll\) observables in the full kinematic range. JHEP 05, 137 (2013). arXiv:1303.5794 ADSCrossRefGoogle Scholar
  51. 51.
    F. Kruger, J. Matias, Probing new physics via the transverse amplitudes of \(B^0 \rightarrow K^{*0} (\rightarrow K^- \pi ^+) l^+l^-\) at large recoil. Phys. Rev. D 71, 094009 (2005). arXiv:hep-ph/0502060 ADSCrossRefGoogle Scholar
  52. 52.
    D. Becirevic, E. Schneider, On transverse asymmetries in \(B \rightarrow K^* l^+l^-\). Nucl. Phys. B 854, 321–339 (2012). arXiv:1106.3283 ADSCrossRefMATHGoogle Scholar
  53. 53.
    A. Bharucha, D.M. Straub, R. Zwicky, \(B\rightarrow V\ell ^+\ell ^-\) in the Standard Model from light-cone sum rules. JHEP 08, 098 (2016). arXiv:1503.05534
  54. 54.
    S. JSger, J. Martin Camalich, On \(B \rightarrow V \ell \ell \) at small dilepton invariant mass, power corrections, and new physics. JHEP 05, 043 (2013). arXiv:1212.2263
  55. 55.
    J. Lyon, R. Zwicky, Resonances gone topsy turvy—the charm of QCD or new physics in \(b \rightarrow s \ell ^+ \ell ^-\)? arXiv:1406.0566
  56. 56.
    M. Ciuchini, M. Fedele et al., \(B\rightarrow K^* \ell ^+ \ell ^-\) decays at large recoil in the Standard Model: a theoretical reappraisal. JHEP 06, 116 (2016). arXiv:1512.07157
  57. 57.
    V.G. Chobanova, T. Hurth, F. Mahmoudi, D. Martinez Santos, S. Neshatpour, Large hadronic power corrections or new physics in the rare decay \(B \rightarrow K^{*} \mu ^{+} \mu ^{-}\)? JHEP 07, 025 (2017). arXiv:1702.02234
  58. 58.
    S. Descotes-Genon, J. Matias, J. Virto, Understanding the \(B\rightarrow K^*\mu ^+\mu ^-\) anomaly. Phys. Rev. D 88, 074002 (2013). arXiv:1307.5683 ADSCrossRefGoogle Scholar
  59. 59.
    W. Altmannshofer, D.M. Straub, New physics in \(B \rightarrow K^*\mu \mu \)? Eur. Phys. J. C 73, 2646 (2013). arXiv:1308.1501 ADSCrossRefGoogle Scholar
  60. 60.
    T. Hurth, F. Mahmoudi, On the LHCb anomaly in \(B \rightarrow K^*\ell ^+\ell ^-\). JHEP 04, 097 (2014). arXiv:1312.5267 ADSCrossRefGoogle Scholar
  61. 61.
    S. JSger, J. Martin Camalich, Reassessing the discovery potential of the \(B \rightarrow K^{*} \ell ^+\ell ^-\) decays in the large-recoil region: SM challenges and BSM opportunities. Phys. Rev. D 93, 014028 (2016). arXiv:1412.3183
  62. 62.
    T. Hurth, F. Mahmoudi, S. Neshatpour, On the anomalies in the latest LHCb data. Nucl. Phys. B 909, 737–777 (2016). arXiv:1603.00865
  63. 63.
    LHCb Collaboration: R. Aaij et al., Angular analysis of the \(B^{0} \rightarrow K^{*0} e^{+} e^{-}\) decay in the low-q\(^{2}\) region. JHEP 04, 064 (2015). arXiv:1501.03038
  64. 64.
    T. Feldmann, J. Matias, Forward-backward and isospin asymmetry for \(B\rightarrow K^*\ell ^{+}\ell ^{-}\) decay in the standard model and in supersymmetry. JHEP 1, 074 (2003). arXiv:hep-ph/0212158 ADSCrossRefGoogle Scholar
  65. 65.
    T. Huber, T. Hurth, E. Lunghi, Inclusive \( \overline{B}\rightarrow {X}_s{\ell }^{+}{\ell }^{-} \): complete angular analysis and a thorough study of collinear photons. JHEP 06, 176 (2015). arXiv:1503.04849
  66. 66.
    BaBar Collaboration: B. Aubert et al., Measurement of the \(B \rightarrow X_s \ell ^+ \ell ^-\) branching fraction with a sum over exclusive modes. Phys. Rev. Lett. 93, 081802 (2004). arXiv:hep-ex/0404006
  67. 67.
    Belle Collaboration: M. Iwasaki et al., Improved measurement of the electroweak penguin process \(B \rightarrow X_s l^+ l^-\). Phys. Rev. D 72, 092005 (2005). arXiv:hep-ex/0503044
  68. 68.
    Belle Collaboration: Y. Sato et al., Measurement of the lepton forward–backward asymmetry in \(B \rightarrow X_s \ell ^+ \ell ^-\) decays with a sum of exclusive modes. Phys. Rev. D 93, 032008 (2016). arXiv:1402.7134 [Addendum: Phys. Rev. D 93(5), 059901 (2016)]
  69. 69.
    BaBar Collaboration: J.P. Lees et al., Measurement of the \(B \rightarrow X_s l^+l^-\) branching fraction and search for direct CP violation from a sum of exclusive final states. Phys. Rev. Lett. 112, 211802 (2014). arXiv:1312.5364
  70. 70.
    LHCb Collaboration: R. Aaij et al., Differential branching fraction and angular moments analysis of the decay \(B^0 \rightarrow K^+ \pi ^- \mu ^+ \mu ^-\) in the \(K^*_{0,2}(1430)^0\) region. JHEP 12, 065 (2016). arXiv:1609.04736
  71. 71.
    D. Das, G. Hiller, M. Jung, A. Shires, The \( \overline{B}\rightarrow \overline{K}\pi \ell \ell \) and \({\overline{B}}_s \rightarrow \overline{K}K\ell \ell \) distributions at low hadronic recoil. JHEP 09, 109 (2014). arXiv:1406.6681 ADSCrossRefGoogle Scholar
  72. 72.
    F. Mahmoudi, S. Neshatpour, J. Virto, \(B \rightarrow K^{*} \mu ^{+} \mu ^{-}\) optimised observables in the MSSM. Eur. Phys. J. C 74, 2927 (2014). arXiv:1401.2145 ADSCrossRefGoogle Scholar
  73. 73.
    S. Bertolini, F. Borzumati, A. Masiero, G. Ridolfi, Effects of supergravity induced electroweak breaking on rare \(B\) decays and mixings. Nucl. Phys. B 353, 591–649 (1991)ADSCrossRefGoogle Scholar
  74. 74.
    M. Misiak et al., Estimate of \(\cal{B} (\bar{B} \rightarrow X_s \gamma )\) at \(O(\alpha _s^2)\). Phys. Rev. Lett. 98, 022002 (2007). arXiv:hep-ph/0609232 ADSCrossRefGoogle Scholar
  75. 75.
    F. Mahmoudi, O. Stål, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings. Phys. Rev. D 81, 035016 (2010). arXiv:0907.1791 ADSCrossRefGoogle Scholar
  76. 76.
    T. Hermann, M. Misiak, M. Steinhauser, \(\bar{B}\rightarrow X_s \gamma \) in the two Higgs doublet model up to next-to-next-to-leading order in QCD. JHEP 11, 036 (2012). arXiv:1208.2788 ADSCrossRefGoogle Scholar
  77. 77.
    M. Misiak et al., Updated NNLO QCD predictions for the weak radiative \(B\)-meson decays. Phys. Rev. Lett. 114, 221801 (2015). arXiv:1503.01789
  78. 78.
    M. Misiak, M. Steinhauser, Weak radiative decays of the B meson and bounds on \(M_{H^\pm }\) in the two-Higgs-doublet model. Eur. Phys. J. C 77, 201 (2017). arXiv:1702.04571
  79. 79.
    A.L. Kagan, M. Neubert, QCD anatomy of B \(\rightarrow \) X(s gamma) decays. Eur. Phys. J. C 7, 5–27 (1999). arXiv:hep-ph/9805303 ADSGoogle Scholar
  80. 80.
    A.L. Kagan, M. Neubert, Isospin breaking in \(B \rightarrow K^* \gamma \) decays. Phys. Lett. B 539, 227–234 (2002). arXiv:hep-ph/0110078 ADSCrossRefGoogle Scholar
  81. 81.
    M.R. Ahmady, F. Mahmoudi, Constraints on the mSUGRA parameter space from NLO calculation of isospin asymmetry in \(B \rightarrow K^* \gamma \). Phys. Rev. D 75, 015007 (2007). arXiv:hep-ph/0608212 ADSCrossRefGoogle Scholar
  82. 82.
    M. González-Alonso, J. Martin Camalich, Global effective-field-theory analysis of new-physics effects in (semi)leptonic kaon decays. JHEP 12, 052 (2016). arXiv:1605.07114
  83. 83.
    FlaviaNet Working Group on Kaon Decays: M. Antonelli et al., Precision tests of the Standard Model with leptonic and semileptonic kaon decays, in PHIPSI08, Proceedings of the International Workshop on \(e^+e^-\) Collisions from phi to psi, Frascati (Rome) Italy, 7–10 April 2008 (2008). arXiv:0801.1817
  84. 84.
    A.J. Buras, P.H. Chankowski, J. Rosiek, L. Slawianowska, \(\Delta M_{d, s}, B^0{d, s} \rightarrow \mu ^{+} \mu ^{-}\) and \(B \rightarrow X_{s} \gamma \) in supersymmetry at large \(\tan \beta \). Nucl. Phys. B 659, 3 (2003). arXiv:hep-ph/0210145 ADSCrossRefGoogle Scholar
  85. 85.
    BaBar Collaboration: B. Aubert et al., A measurement of the branching fractions of exclusive \(\bar{B} \rightarrow D^{(*)}\) (\(\pi \)) \(\ell ^{-} \bar{\nu }(\ell )\) decays in events with a fully reconstructed \(B\) meson. Phys. Rev. Lett. 100, 151802 (2008). arXiv:0712.3503
  86. 86.
    BaBar Collaboration: B. Aubert et al., Measurement of \(|V(cb)|\) and the form-factor slope in anti-B\(\rightarrow \)D l-anti-nu decays in events tagged by a fully reconstructed B meson. Phys. Rev. Lett. 104, 011802 (2010). arXiv:0904.4063
  87. 87.
    Belle Collaboration: W. Dungel et al., Measurement of the form factors of the decay \(B^0 \rightarrow D^{*-} \ell ^+ \nu \) and determination of the CKM matrix element \(|Vcb|\). Phys. Rev. D 82, 112007 (2010). arXiv:1010.5620
  88. 88.
    Belle Collaboration: R. Glattauer et al., Measurement of the decay \(B\rightarrow D\ell \nu _\ell \) in fully reconstructed events and determination of the Cabibbo–Kobayashi–Maskawa matrix element \(|V_{cb}|\). Phys. Rev. D 93, 032006 (2016). arXiv:1510.03657
  89. 89.
    Belle Collaboration: Y. Sato et al., Measurement of the branching ratio of \(\bar{B}^0 \rightarrow D^{*+} \tau ^- \bar{\nu }_{\tau }\) relative to \(\bar{B}^0 \rightarrow D^{*+} \ell ^- \bar{\nu }_{\ell }\) decays with a semileptonic tagging method. Phys. Rev. D 94, 072007 (2016). arXiv:1607.07923
  90. 90.
    Belle Collaboration: S. Hirose et al., Measurement of the \(\tau \) lepton polarization and \(R(D^*)\) in the decay \(\bar{B} \rightarrow D^* \tau ^- \bar{\nu }_\tau \). Phys. Rev. Lett. 118, 211801 (2017). arXiv:1612.00529
  91. 91.
    Y. Amhis et al., Averages of \(b\)-hadron, \(c\)-hadron, and \(\tau \)-lepton properties as of summer 2016. arXiv:1612.07233
  92. 92.
    Y. Amhis et al., Average of \(R(D)\) and \(R(D^*)\) for Moriond EW 2017.
  93. 93.
    HPQCD Collaboration: H. Na, C.M. Bouchard, G.P. Lepage, C. Monahan, J. Shigemitsu, \(B \rightarrow D l \nu \) form factors at nonzero recoil and extraction of \(|V_{cb}|\). Phys. Rev. D 92, 054510 (2015). arXiv:1505.03925. [Erratum: Phys. Rev. D 93(11), 119906 (2016)]
  94. 94.
    S. Fajfer, J.F. Kamenik, I. Nisandzic, On the \(B \rightarrow D^* \tau \bar{\nu }_{\tau }\) sensitivity to new physics. Phys. Rev. D 85, 094025 (2012). arXiv:1203.2654 ADSCrossRefGoogle Scholar
  95. 95.
    S. Fajfer, J.F. Kamenik, I. Nišandžić, \(b\rightarrow {D}^{*}\tau {\overline{\nu }}_{\tau }\). Phys. Rev. D 85, 094025 (2012)ADSCrossRefGoogle Scholar
  96. 96.
    Fermilab Lattice, MILC: J.A. Bailey et al., \(|V_{ub}|\) from \(B\rightarrow \pi \ell \nu \) decays and (2+1)-flavor lattice QCD. Phys. Rev. D 92, 014024 (2015). arXiv:1503.07839
  97. 97.
    BaBar Collaboration: J.P. Lees et al., Evidence of \(B^+ \rightarrow \tau ^+\nu \) decays with hadronic B tags. Phys. Rev. D 88, 031102 (2013). arXiv:1207.0698
  98. 98.
    BaBar Collaboration: B. Aubert et al., A search for \(B^+ \rightarrow \ell ^+ \nu _{\ell }\) recoiling against \(B^{-}\rightarrow D^{0} \ell ^{-}\bar{\nu } X\). Phys. Rev. D 81, 051101 (2010). arXiv:0912.2453
  99. 99.
    Belle Collaboration: I. Adachi et al., Evidence for \(B^- \rightarrow \tau ^- \bar{\nu }_\tau \) with a hadronic tagging method using the full data sample of Belle. Phys. Rev. Lett. 110, 131801 (2013). arXiv:1208.4678
  100. 100.
    Belle Collaboration: K. Hara et al., Evidence for \(B^- \rightarrow \tau ^- \bar{\nu }\) with a semileptonic tagging method. Phys. Rev. D 82, 071101 (2010). arXiv:1006.4201
  101. 101.
    ATLAS Collaboration, Angular analysis of \(B^0_d \rightarrow K^{*}\mu ^+\mu ^-\) decays in \(pp\) collisions at \(\sqrt{s}= 8\) TeV with the ATLAS detector, in 52nd Rencontres de Moriond on Electroweak Interactions and Unified Theories (2017). ATLAS-CONF-2017-023Google Scholar
  102. 102.
    CMS Collaboration, Measurement of the \(P_1\) and \(P_5^{\prime }\) angular parameters of the decay \({\rm B}^0 \rightarrow {\rm K} ^{*0} \mu ^+ \mu ^-\) in proton–proton collisions at \(\sqrt{s}=8\) TeV, in 52nd Rencontres de Moriond on Electroweak Interactions and Unified Theories (2017). CMS-PAS-BPH-15-008Google Scholar
  103. 103.
    F. Mahmoudi, T. Hurth, S. Neshatpour, Present status of \(b \rightarrow s l^+ l^-\) anomalies, in 6th Workshop on Theory, Phenomenology and Experiments in Flavour Physics: Interplay of Flavour Physics with electroweak symmetry breaking (Capri 2016) Anacapri, Capri, Italy, June 11, 2016 (2016). arXiv:1611.05060
  104. 104.
    LHCb Collaboration: R. Aaij et al., Measurement of the \(B^0_s\rightarrow \mu ^+\mu ^-\) branching fraction and effective lifetime and search for \(B^0\rightarrow \mu ^+\mu ^-\) decays. Phys. Rev. Lett. 118, 191801 (2017). arXiv:1703.05747
  105. 105.
    LHCb and CMS Collaborations: V. Khachatryan et al., Observation of the rare \(B^0_s\rightarrow \mu ^+\mu ^-\) decay from the combined analysis of CMS and LHCb data. Nature 522, 68–72 (2015). arXiv:1411.4413
  106. 106.
    LHCb Collaboration: R. Aaij et al., Measurement of the \(B^0_s \rightarrow \mu ^+ \mu ^-\) branching fraction and search for \(B^0 \rightarrow \mu ^+ \mu ^-\) decays at the LHCb experiment. Phys. Rev. Lett. 111, 101805 (2013). arXiv:1307.5024
  107. 107.
    CMS Collaboration: S. Chatrchyan et al., Measurement of the \(B_s^0 \rightarrow \mu ^+ \mu ^-\) branching fraction and search for \(B^0 \rightarrow \mu ^+ \mu ^-\) with the CMS experiment. Phys. Rev. Lett. 111, 101804 (2013). arXiv:1307.5025
  108. 108.
    ATLAS Collaboration: M. Aaboud et al., Study of the rare decays of \(B^0_s\) and \(B^0\) into muon pairs from data collected during the LHC Run 1 with the ATLAS detector. Eur. Phys. J. C 76(9), 513 (2016). arXiv:1604.04263
  109. 109.
    CDF Collaboration: T. Aaltonen et al., Search for the decays \(B^0_s \rightarrow e^+ \mu ^-\) and \(B^0_s \rightarrow e^+ e^-\) in CDF Run II. Phys. Rev. Lett. 102, 201801 (2009). arXiv:0901.3803
  110. 110.
    LHCb Collaboration: R. Aaij et al., Search for the decays \(B_s^0\rightarrow \tau ^+\tau ^-\) and \(B^0\rightarrow \tau ^+\tau ^-\). Phys. Rev. Lett. 118, 251802 (2017) arXiv:1703.02508
  111. 111.
    BaBar Collaboration: B. Aubert et al., A search for the rare decay \(B^0 \rightarrow \tau ^+ \tau ^-\) at BABAR. Phys. Rev. Lett. 96, 241802 (2006). arXiv:hep-ex/0511015
  112. 112.
    A.J. Buras, J. Girrbach, D. Guadagnoli, G. Isidori, On the Standard Model prediction for BR(\(B_{s, d} \rightarrow \mu ^+ \mu ^-\)). Eur. Phys. J. C 72, 2172 (2012). arXiv:1208.0934 ADSCrossRefGoogle Scholar
  113. 113.
    BaBar Collaboration: B. Aubert et al., Measurement of the \(B \rightarrow X_s \gamma \) branching fraction and photon energy spectrum using the recoil method. Phys. Rev. D 77, 051103 (2008). arXiv:0711.4889
  114. 114.
    BaBar Collaboration: J.P. Lees et al., Exclusive measurements of \(b \rightarrow s\gamma \) transition rate and photon energy spectrum. Phys. Rev. D 86, 052012 (2012). arXiv:1207.2520
  115. 115.
    BaBar Collaboration: J.P. Lees et al., Precision measurement of the \(B \rightarrow X_s \gamma \) photon energy spectrum, branching fraction, and direct CP asymmetry \(A_{CP}(B \rightarrow X_{s+d}\gamma )\). Phys. Rev. Lett. 109, 191801 (2012). arXiv:1207.2690
  116. 116.
    Belle Collaboration: T. Saito et al., Measurement of the \(\bar{B} \rightarrow X_s \gamma \) branching fraction with a sum of exclusive decays. Phys. Rev. D 91, 052004 (2015). arXiv:1411.7198
  117. 117.
    Belle Collaboration: A. Abdesselam et al., Measurement of the inclusive \(B\rightarrow X_{s+d} \gamma \) branching fraction, photon energy spectrum and HQE parameters, in Proceedings, 38th International Conference on High Energy Physics (ICHEP 2016): Chicago, IL, USA, August 3–10, 2016 (2016). arXiv:1608.02344
  118. 118.
    M. Czakon, P. Fiedler et al., The \((Q_{7}, Q_{1,2})\) contribution to \( \overline{B}\rightarrow {X}_s\gamma \) at \({\cal{O}}\left({\alpha }_{\rm s}^2\right) \). JHEP 04, 168 (2015). arXiv:1503.01791
  119. 119.
    M. Artuso, G. Borissov, A. Lenz, CP violation in the \(B_s^0\) system. Rev. Mod. Phys. 88, 045002 (2016). arXiv:1511.09466
  120. 120.
    KLOE Collaboration: F. Ambrosino et al., Precise measurement of \(\Gamma (K \rightarrow e \nu (\gamma )) / \Gamma (K \rightarrow \mu \nu (\gamma ))\) and study of \(K \rightarrow e \nu \gamma \). Eur. Phys. J. C 64, 627–636 (2009). arXiv:0907.3594 [Erratum: Eur. Phys. J. C 65, 703 (2010)]
  121. 121.
    NA62 Collaboration: C. Lazzeroni et al., Precision measurement of the ratio of the charged kaon leptonic decay rates. Phys. Lett. B 719, 326–336 (2013). arXiv:1212.4012
  122. 122.
    Y. Akrami, P. Scott, J. Edsjö, J. Conrad, L. Bergström, A profile likelihood analysis of the constrained MSSM with genetic algorithms. JHEP 4, 57 (2010). arXiv:0910.3950 ADSCrossRefMATHGoogle Scholar
  123. 123.
    F. Feroz, K. Cranmer, M. Hobson, R. Ruiz de Austri, R. Trotta, Challenges of profile likelihood evaluation in multi-dimensional SUSY scans. JHEP 6, 42 (2011). arXiv:1101.3296 ADSCrossRefMATHGoogle Scholar
  124. 124.
    A. Arbey, M. Battaglia, F. Mahmoudi, D. Martinez Santos, Supersymmetry confronts \(B_s \rightarrow \mu ^+\mu ^-\): present and future status. Phys. Rev. D 87, 035026 (2013). arXiv:1212.4887 ADSCrossRefGoogle Scholar
  125. 125.
    J. Skilling, Nested sampling, in American Institute of Physics Conference Series, ed. by R. Fischer, R. Preuss, U.V. Toussaint, vol 735 (2004), pp. 395–405Google Scholar
  126. 126.
    F. Feroz, M.P. Hobson, M. Bridges, MULTINEST: an efficient and robust Bayesian inference tool for cosmology and particle physics. MNRAS 398, 1601–1614 (2009). arXiv:0809.3437 ADSCrossRefGoogle Scholar
  127. 127.
    T. Hurth, F. Mahmoudi, S. Neshatpour, Global fits to \(b \rightarrow s\ell \ell \) data and signs for lepton non-universality. JHEP 12, 053 (2014). arXiv:1410.4545
  128. 128.
    W. Altmannshofer, C. Niehoff, P. Stangl, D.M. Straub, Status of the \(B\rightarrow K^*\mu ^+\mu ^-\) anomaly after Moriond. Eur. Phys. J. C 77(6), 377 (2017). arXiv:1703.09189
  129. 129.
    S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, Global analysis of \(b\rightarrow s\ell \ell \) anomalies. JHEP 06, 092 (2016). arXiv:1510.04239

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3

Authors and Affiliations

  • The GAMBIT Flavour Workgroup:
  • Florian U. Bernlochner
    • 1
  • Marcin Chrząszcz
    • 2
    • 3
  • Lars A. Dal
    • 4
  • Ben Farmer
    • 5
    • 6
  • Paul Jackson
    • 7
    • 8
  • Anders Kvellestad
    • 9
  • Farvah Mahmoudi
    • 10
    • 11
  • Antje Putze
    • 12
  • Christopher Rogan
    • 13
  • Pat Scott
    • 14
  • Nicola Serra
    • 2
  • Christoph Weniger
    • 15
  • Martin White
    • 7
    • 8
  1. 1.Physikalisches Institut der Rheinischen Friedrich-Wilhelms-Universität BonnBonnGermany
  2. 2.Physik-InstitutUniversität ZürichZurichSwitzerland
  3. 3.H. Niewodniczański Institute of Nuclear PhysicsPolish Academy of SciencesKrakówPoland
  4. 4.Department of PhysicsUniversity of OsloOsloNorway
  5. 5.Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University CentreStockholmSweden
  6. 6.Department of PhysicsStockholm UniversityStockholmSweden
  7. 7.Department of PhysicsUniversity of AdelaideAdelaideAustralia
  8. 8.Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale, Australia
  9. 9.NORDITAStockholmSweden
  10. 10.Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574Saint-Genis-LavalFrance
  11. 11.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  12. 12.LAPTh, Université de Savoie, CNRSAnnecy-le-VieuxFrance
  13. 13.Department of PhysicsHarvard UniversityCambridgeUSA
  14. 14.Department of Physics, Blackett LaboratoryImperial College LondonLondonUK
  15. 15.GRAPPA, Institute of PhysicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations