Advertisement

Cation ordering, ferrimagnetism and ferroelectric relaxor behavior in Pb(Fe1−xScx)2∕3W1∕3O3 solid solutions

  • Sergey A. Ivanov
  • Premysl Beran
  • Alexandr A. Bush
  • Tapati Sarkar
  • Samrand Shafeie
  • Duo Wang
  • Biplab Sanyal
  • Olle Eriksson
  • Martin Sahlberg
  • Yaroslav Kvashnin
  • Roland Tellgren
  • Per Nordblad
  • Roland MathieuEmail author
Open Access
Regular Article

Abstract

Ceramic samples of the multiferroic perovskite Pb(Fe1−xScx)2∕3W1∕3O3 with 0 ≤ x ≤ 0.4 have been synthesized using a conventional solid-state reaction method, and investigated experimentally and theoretically using first-principle calculations. Rietveld analyses of joint synchrotron X-ray and neutron diffraction patterns show the formation of a pure crystalline phase with cubic (Fm3̅m) structure with partial ordering in the B-sites. The replacement of Fe by Sc leads to the increase of the cation order between the B′ and B′′ sites. As the non-magnetic Sc3+ ions replace the magnetic Fe3+ cations, the antiferromagnetic state of PbFe2∕3W1∕3O3 is turned into a ferrimagnetic state reflecting the different magnitude of the magnetic moments on the B′ and B′′ sites. The materials remain ferroelectric relaxors with increasing Sc content. Results from experiments on annealed and quenched samples show that the cooling rate after high temperature annealing controls the degree of cationic order in Pb(Fe1−xScx)2∕3W1∕3O3 and possibly also in the undoped PbFe2∕3W1∕3O3.

Graphical abstract

Keywords

Solid State and Materials 

Supplementary material

References

  1. 1.
    M.M. Vopson, Crit. Rev. Solid State Mater. Sci. 40, 223 (2015) CrossRefADSGoogle Scholar
  2. 2.
    B. Wang,Mechanics of Advanced Functional Materials. Advanced Topics in Science and Technology in China (Springer, Berlin, Heidelberg, 2013) Google Scholar
  3. 3.
    K.F. Wang, J.M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    H. Liu, X. Yang, Ferroelectrics 507, 69 (2017) CrossRefGoogle Scholar
  5. 5.
    I.E. Chupis, Low Temp. Phys. 36, 477 (2010) CrossRefADSGoogle Scholar
  6. 6.
    S. Vasala, M. Karppinen, Prog. Solid State Chem. 43, 1 (2015) CrossRefGoogle Scholar
  7. 7.
    G.A. Smolenski, A.I. Agranovskaya, V.A. Isupov, Sov. Phys. Sol. State 1, 907 (1959) Google Scholar
  8. 8.
    G.A. Smolenskii, J. Phys. Soc. Jpn. (Suppl.) 28, 26 (1970) Google Scholar
  9. 9.
    L.E. Cross, Ferroelectrics 76, 241 (1987) CrossRefGoogle Scholar
  10. 10.
    A.A. Bokov, Z.G. Ye, J. Mater. Sci. 41, 31 (2006) CrossRefADSGoogle Scholar
  11. 11.
    A. Levstik, Appl. Phys. Lett. 91, 012905 (2007) CrossRefADSGoogle Scholar
  12. 12.
    I.W. Chen, J. Phys. Chem. Solids 61, 197 (2000) CrossRefADSGoogle Scholar
  13. 13.
    L. Chen, A.A. Bokov, W. Zhu, H. Wu, J. Zhuang, Z.G. Ye, Sci. Rep. 6, 22327 (2016) CrossRefADSGoogle Scholar
  14. 14.
    Y. Shimakawa, M. Azuma, N. Ichikawa, Materials 4, 153 (2011) CrossRefADSGoogle Scholar
  15. 15.
    S. Matteppanavar, S. Rayaprol, A.A. Angadi, B. Sahoo, Ceram. Int. 41, 11680 (2015) CrossRefGoogle Scholar
  16. 16.
    J.F. Scott, NPG Asia Mater. 5, e72-11 (2013) CrossRefGoogle Scholar
  17. 17.
    Y.N. Venevtsev, E.D. Politova, S.A. Ivanov, inFerro- and Antiferroelectrics of Barium Titanate Family, Chemistry (Moscow, 1985), p. 256 Google Scholar
  18. 18.
    Yu. N. Venevtsev, V.V. Gagulin, V.N. Ljubimov, inFerroelectromagnets (Nauka, Moscow, 1982), p. 172 Google Scholar
  19. 19.
    L. Zhou, P.M. Vilarinho, P.Q. Mantas, J.L. Baptista, E. Fortunato, J. Eur. Ceram. Soc. 20, 1035 (2000) CrossRefGoogle Scholar
  20. 20.
    S.A. Ivanov, Magnetoelectric complex metal oxides: main features of preparation, structure and properties, inAdvanced Functional Materials, edited by B. Sanyal, O. Eriksson (Elsevier, Oxford, UK, 2012), pp. 163–234 Google Scholar
  21. 21.
    R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, Phys. Status Solidi B 244, 2254 (2007) CrossRefADSGoogle Scholar
  22. 22.
    Y.A. Shevchuk, S.K. Korchagina, V.V. Gagulin, V.V. Bogatko, Ferroelectrics 199, 223 (1997) CrossRefGoogle Scholar
  23. 23.
    B. Fraygola, J.A. Eiras, Mater. Res. 17, 1594 (2014) CrossRefGoogle Scholar
  24. 24.
    D. Lee, S.M. Yang, Y. Jo, T.K. Song, J. Korean Phys. Soc. 57, 1914 (2010) CrossRefGoogle Scholar
  25. 25.
    M. Yokosuka, H. Kojima, Jpn. J. Appl. Phys. 36, 6046 (1997) CrossRefADSGoogle Scholar
  26. 26.
    S.A. Ivanov, P. Nordblad, R. Tellgren, T. Ericsson, H. Rundlöf, Solid State Sci. 9, 440 (2007) CrossRefADSGoogle Scholar
  27. 27.
    D. Szwagierczak, J. Kulawik. J. Eur. Ceram. Soc. 25, 1657 (2005) CrossRefGoogle Scholar
  28. 28.
    L. Zhou, P.M. Vilarinho, J.L. Baptista, J. Appl. Phys. 85, 2312 (1999) CrossRefADSGoogle Scholar
  29. 29.
    D. Brzezinska, R. Skulski, D. Bochenek, P. Niemiec, A. Chrobak, L. Fajfrowski, S. Matyjasik, J. Alloys Compd. 737, 299 (2018) CrossRefGoogle Scholar
  30. 30.
    C. Miranda, P.M. Vilarinho, L.Q. Zhou, Ferroelectrics 223, 269 (1999) CrossRefGoogle Scholar
  31. 31.
    B.H. Lee, N.K. Kim, B.O. Park, S.H. Cho, Mater. Lett. 33, 57 (1997) CrossRefGoogle Scholar
  32. 32.
    A.S. Khim, J. Wang, X. Junmin, Solid State Ionics 127, 285 (2000) CrossRefGoogle Scholar
  33. 33.
    K. Uchino, S. Nomura, J. Phys. Soc. Jpn. 41, 542 (1976) CrossRefADSGoogle Scholar
  34. 34.
    K. Uchino, S. Nomura, Jpn. J. Appl. Phys. 18, 1493 (1979) CrossRefADSGoogle Scholar
  35. 35.
    S.A. Ivanov, A.A. Bush, C. Ritter, M.A. Behtin, V.M. Cherepanov, C. Autieri, Y.O. Kvashnin, I. Di Marco, B. Sanyal, O. Eriksson, P. Anil Kumar, P. Nordblad, R. Mathieu, Mater. Chem. Phys. 187, 218 (2017) CrossRefGoogle Scholar
  36. 36.
    S. Matteppanavar, S. Rayaprol, B. Angadi, B. Sahoo, J. Supercond. Novel Magn. 30, 1317 (2017) CrossRefGoogle Scholar
  37. 37.
    S. Matteppanavar, S. Rayaprol, B. Angadi, B. Sahoo, J. Alloys Compd. 677, 27 (2016) CrossRefGoogle Scholar
  38. 38.
    P.M. Vilarinho, L. Zhou, M. Pöckl, N. Marques, J.L. Baptista, J. Am. Ceram. Soc. 83, 1149 (2000) CrossRefGoogle Scholar
  39. 39.
    L. Feng, H. Guo, Z.G. Ye, J. Mater. Res. 22, 2116 (2006) CrossRefADSGoogle Scholar
  40. 40.
    E. Dulkin, E. Mojaev, M. Roth, S. Kamba, P.M. Vilarinho, J. Appl. Phys. 103, 083542 (2008) CrossRefADSGoogle Scholar
  41. 41.
    R. Wongmaneerung, X. Tan, R.W. McCallum, S. Ananta, R. Yimnirun, Appl. Phys. Lett. 90, 242905 (2007) CrossRefADSGoogle Scholar
  42. 42.
    X. Tan, R. Wongmaneerung, R.W. McCallum, J. Appl. Phys. 102, 104114 (2007) CrossRefADSGoogle Scholar
  43. 43.
    Z.G. Ye, K. Toda, M. Sato, J. Korean Phys. Soc. 32, S1028 (1998) Google Scholar
  44. 44.
    S.A. Ivanov, S.-G. Eriksson, R. Tellgren, H. Rundlöf, Mater. Res. Bull. 39, 2317 (2004) CrossRefGoogle Scholar
  45. 45.
    B. Fraygola, A. Mesquita, A.A. Coelho, D. Garcia, V.R. Mastelaro, J.A. Eiras, Phys. Status Solidi A 210, 386 (2013) CrossRefADSGoogle Scholar
  46. 46.
    Z.G. Ye, H. Schmid, J. Cryst. Growth 167, 628 (1996) CrossRefADSGoogle Scholar
  47. 47.
    A.F. Koroleva, A.A. Bush, K.E. Kamentsev, V.Ya. Shkuratov, S.A. Ivanov, V.M. Cherepanov, S. Shafeie, Inorg. Mater. 54, 288 (2018) CrossRefGoogle Scholar
  48. 48.
    G.A. Komandin, O.E. Porodinkov, A.A. Bush, A.F. Koroleva, I.E. Spektor, S.V. Chuchupal, D.S. Seregin, L.D. Iskhakova, Phys. Solid State 59, 2365 (2017) CrossRefADSGoogle Scholar
  49. 49.
    J. Rodriguez-Carvajal, Physica B 192, 55 (1993) CrossRefADSGoogle Scholar
  50. 50.
    A.C. Dippel, H.P. Liermann, J.T. Delitz, P. Walter, H. Schulte-Schrepping, O.H. Seeck, H. Franz, J. Synchrotron Radiat. 22, 675 (2015) CrossRefGoogle Scholar
  51. 51.
    A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, D. Hausermann, High Pressure Res. 14, 235 (1996) CrossRefADSGoogle Scholar
  52. 52.
    V.F. Sears, Neutron News 3, 26 (1992) CrossRefGoogle Scholar
  53. 53.
    M.I. Aroyo, J.M. Perez-Mato, D. Orobengoa, E. Tasci, G. de la Flor, A. Kirov, Bulg. Chem. Commun. 43, 183 (2011) Google Scholar
  54. 54.
    A.S. Kamzin, V.A. Bokov, Phys. Solid State 55, 1191 (2013) CrossRefADSGoogle Scholar
  55. 55.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) CrossRefADSGoogle Scholar
  56. 56.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) CrossRefADSGoogle Scholar
  57. 57.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  58. 58.
    A.I. Liechtenstein, V.I. Anisimov, J. Zaanen, Phys. Rev. B 52, R5467 (1995) CrossRefADSGoogle Scholar
  59. 59.
    V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997) ADSGoogle Scholar
  60. 60.
    G. Rollmann, A. Rohrbach, P. Entel, J. Hafner, Phys. Rev. B 69, 165107 (2004) CrossRefADSGoogle Scholar
  61. 61.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976) CrossRefADSGoogle Scholar
  62. 62.
    K. Momma, F. Izumi, J. Appl. Crystallogr. 44, 1272 (2011) CrossRefGoogle Scholar
  63. 63.
    C.G. Stenger, A.J. Burggraaf, Phys. Status Solidi A 61, 653 (1980) CrossRefADSGoogle Scholar
  64. 64.
    D.J. Goossens, Acc. Chem. Res. 46, 2597 (2013) CrossRefGoogle Scholar
  65. 65.
    P. Juhas, I. Grinberg, A.M. Rappe, W. Dmowski, T. Egami, P.K. Davies, Phys. Rev. B 69, 214101 (2004) CrossRefADSGoogle Scholar
  66. 66.
    P. Juhas, P.K. Davies, M.A. Akbas, AIP Conf. Proc. 626, 108 (2002) CrossRefADSGoogle Scholar
  67. 67.
    P. Juhas, P.K. Davies, M.A. Akbas, J. Am. Ceram. Soc. 87, 2086 (2004) CrossRefGoogle Scholar
  68. 68.
    J. Blasco, C. Ritter, L. Morellon, P.A. Algarabel, J.M. De Teresa, D. Serrate, J. García, M.R. Ibarra, Solid State Sci. 4, 651 (2002) CrossRefADSGoogle Scholar
  69. 69.
    J.B. Goodenough, J. Phys. Chem. Solids 6, 287 (1958) CrossRefADSGoogle Scholar
  70. 70.
    J. Kanamori, J. Phys. Chem. Solids 10, 87 (1959) CrossRefADSGoogle Scholar
  71. 71.
    P. Davies, H. Wu, A. Borisevich, I. Molodetsky, L. Farber, Annu. Rev. Mater. Res. 38, 369 (2008) CrossRefADSGoogle Scholar
  72. 72.
    L. Zhou, P.M. Vilarinho, J.L. Baptista, J. Eur. Ceram. Soc. 18, 1383 (1998) CrossRefGoogle Scholar
  73. 73.
    N. Setter, L.E. Cross, J. Appl. Phys. 51, 4356 (1980) CrossRefADSGoogle Scholar
  74. 74.
    G. King, P.M. Woodward, J. Mater. Chem. 20, 5785 (2010) CrossRefGoogle Scholar
  75. 75.
    M.W. Lufaso, P.M. Woodward, Acta Cryst. Sect. B 60, 10 (2004) CrossRefGoogle Scholar
  76. 76.
    M.T. Anderson, K.B. Greenwood, G.A. Taylor, K.R. Poeppelmeier, Prog. Solid State Chem. 22, 197 (1993) CrossRefGoogle Scholar
  77. 77.
    V.A. Isupov, Ferroelectrics 315, 149 (2005) CrossRefGoogle Scholar
  78. 78.
    S.A. Larregola, J.A. Alonso, M. Alguero, R. Jimenez, E. Suard, F. Porcher, J.C. Pedregosa, Dalton Trans. 39, 5159 (2010) CrossRefGoogle Scholar
  79. 79.
    B. Malibert, M. Dkhil, M. Dunlop, J.M. Kiat, G. Baldinozzi, S.B. Vakhrushev, Ferroelectrics 235, 87 (1999) CrossRefGoogle Scholar
  80. 80.
    J.A. Alonso, I. Rasines, J. Phys. Chem. Solids 49, 3885 (1988) CrossRefGoogle Scholar
  81. 81.
    K.S. Aleksandrov, S.V. Misyul, E.E. Baturinets, Ferroelectrics 354, 60 (2007) CrossRefGoogle Scholar
  82. 82.
    Yu.N. Venevtsev, V.V. Sklyarevskii, I.I. Lukashevich, V.P. Romanov, N.M. Kotov, A.I. Kashlinskii, N.I. Filipov, A.S. Viskov, Sov. Phys. Crystallogr. 21, 556 (1976) [original article (in Russian): Kristallografiya 21, 971 (1976)] Google Scholar
  83. 83.
    I.P. Raevskii, D.A. Sarychev, S.A. Bryugeman, L.A. Reznichenko, L.A. Shilkina, O.N. Razumovskaya, V.S. Nikolaev, N.P. Vyshatko, A.N. Salak, Crystallogr. Rep. 47, 1012 (2002) [original article (in Russian): Kristallografiya 47, 1081 (2002)] CrossRefADSGoogle Scholar
  84. 84.
    J. Zang, W. Jo, J. Rödel, Appl. Phys. Lett. 102, 032901 (2013) CrossRefADSGoogle Scholar
  85. 85.
    H. Muramatsu, H. Nagata, T. Taken, Jpn. J. Appl. Phys. 55, 10TB07 (2016) CrossRefGoogle Scholar
  86. 86.
    Y.C. Hu, Y.W. Cui, X.W. Wang, Y.P. Liu, Chin. Phys. Lett. 33, 026101 (2016) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  • Sergey A. Ivanov
    • 1
    • 2
  • Premysl Beran
    • 3
  • Alexandr A. Bush
    • 4
  • Tapati Sarkar
    • 2
  • Samrand Shafeie
    • 5
  • Duo Wang
    • 6
  • Biplab Sanyal
    • 6
  • Olle Eriksson
    • 6
  • Martin Sahlberg
    • 5
  • Yaroslav Kvashnin
    • 6
  • Roland Tellgren
    • 5
  • Per Nordblad
    • 2
  • Roland Mathieu
    • 2
    Email author
  1. 1.Center of Materials Science, Karpov Institute of Physical ChemistryMoscowRussia
  2. 2.Department of Engineering SciencesUppsala UniversityUppsalaSweden
  3. 3.Nuclear Physics InstituteCASRezCzech Republic
  4. 4.Moscow Technological UniversityMoscowRussia
  5. 5.Department of ChemistryÅngstrom Laboratory, Uppsala UniversityUppsalaSweden
  6. 6.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations