Advertisement

Gradient-level and nonlocal density functional descriptions of Cu-Au intermetallic compounds

  • Henrik LevämäkiEmail author
  • Liyun Tian
  • Kalevi Kokko
  • Levente Vitos
Open Access
Regular Article
  • 119 Downloads
Part of the following topical collections:
  1. Topical issue: Special issue in honor of Hardy Gross

Abstract

We use three gradient level and two nonlocal density functional approximations to study the thermodynamic properties of Cu-Au compounds. It is found that a well-designed gradient level approximation (quasi non-uniform approximation, QNA) reproduces the experimental equilibrium volumes and the formation energies of L12 and L10 phases. On the other hand, QNA predicts a non-existent β2 phase, which can be remedied only when employing the nonlocal hybrid-level Heyd-Scuseria-Ernzerhof (HSE06) or Perdew-Burke-Ernzerhof (PBE0) approximations. Gradient-level approximations lead to similar electronic structures for the Cu-Au compounds whereas hybrids shift the d-band towards negative energies and account for the complex d-d hybridization more accurately.

References

  1. 1.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964) CrossRefADSGoogle Scholar
  2. 2.
    W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965) CrossRefADSGoogle Scholar
  3. 3.
    R.M. Dreizler, E.K.U. Gross, Density functional theory (Springer-Verlag, Berlin, Heidelberg, 1990) Google Scholar
  4. 4.
    A.J. Cohen, P. Mori-Sánchez, W. Yang, Chem. Rev. 112, 289 (2012) CrossRefGoogle Scholar
  5. 5.
    V. Ozolinš, C. Wolverton, A. Zunger, Phys. Rev. B 57, 6427 (1998) CrossRefADSGoogle Scholar
  6. 6.
    Y. Zhang, G. Kresse, C. Wolverton, Phys. Rev. Lett. 112, 075502 (2014) CrossRefADSGoogle Scholar
  7. 7.
    E. Decolvenaere, M.J. Gordon, A. Van der Ven, Phys. Rev. B 92, 085119 (2015) CrossRefADSGoogle Scholar
  8. 8.
    L.Y. Tian, H. Levämäki, M. Ropo, K. Kokko, Á. Nagy, L. Vitos, Phys. Rev. Lett. 117, 066401 (2016) CrossRefADSGoogle Scholar
  9. 9.
    S.H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200 (1980) CrossRefADSGoogle Scholar
  10. 10.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992) CrossRefADSGoogle Scholar
  11. 11.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  12. 12.
    D.C. Langreth, M.J. Mehl, Phys. Rev. B 28, 1809 (1983) CrossRefADSGoogle Scholar
  13. 13.
    A.D. Becke, Phys. Rev. A 38, 3098 (1988) CrossRefADSGoogle Scholar
  14. 14.
    J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992) CrossRefADSGoogle Scholar
  15. 15.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003) CrossRefADSGoogle Scholar
  16. 16.
    J. Heyd, G.E. Scuseria, M. Ernzerhof, J. Chem. Phys. 124, 219906 (2006) CrossRefADSGoogle Scholar
  17. 17.
    H. Levämäki, M.P.J. Punkkinen, K. Kokko, L. Vitos, Phys. Rev. B 86, 201104 (2012) CrossRefADSGoogle Scholar
  18. 18.
    H. Levämäki, M.P.J. Punkkinen, K. Kokko, L. Vitos, Phys. Rev. B 89, 115107 (2014) CrossRefADSGoogle Scholar
  19. 19.
    J.P. Perdew, M. Ernzerhof, K. Burke, J. Chem. Phys. 105, 9982 (1996) CrossRefADSGoogle Scholar
  20. 20.
    M. Ernzerhof, G.E. Scuseria, J. Chem. Phys. 110, 5029 (1999) CrossRefADSGoogle Scholar
  21. 21.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558 (1993) CrossRefADSGoogle Scholar
  22. 22.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996) CrossRefGoogle Scholar
  23. 23.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996) CrossRefADSGoogle Scholar
  24. 24.
    J.J. Mortensen, L.B. Hansen, K.W. Jacobsen, Phys. Rev. B 71, 35109 (2005) CrossRefADSGoogle Scholar
  25. 25.
    J. Enkovaara et al., J. Phys. Condens. Matter 22, 253202 (2010) CrossRefADSGoogle Scholar
  26. 26.
    P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) CrossRefADSGoogle Scholar
  27. 27.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999) CrossRefADSGoogle Scholar
  28. 28.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    O.K. Andersen, O. Jepsen, G. Krier, Exact muffin-tin orbitaltheory, in Lectures on methods of electronic structure calculations, edited by V. Kumar, O.K. Andersen, A. Mookerjee (World Scientific, Singapore, 1995), January 1994, pp. 63–124 Google Scholar
  30. 30.
    L. Vitos, I.A. Abrikosov, B. Johansson, Phys. Rev. Lett. 87, 156401 (2001) CrossRefADSGoogle Scholar
  31. 31.
    L. Vitos, Phys. Rev. B 64, 014107 (2001) CrossRefADSGoogle Scholar
  32. 32.
    L. Vitos, Computational quantum mechanics for materials engineers, Engineering materials and processes (Springer London, London, 2007) Google Scholar
  33. 33.
    R.M. Martin, Electronic structure: basic theory and practical methods (Cambridge University Press, Cambridge, 2005) Google Scholar
  34. 34.
    P. Soven, Phys. Rev. 156, 809 (1967) CrossRefADSGoogle Scholar
  35. 35.
    B.L. Györffy, Phys. Rev. B 5, 2382 (1972) CrossRefADSGoogle Scholar
  36. 36.
    L. Vitos, J. Kollár, H.L. Skriver, Phys. Rev. B 55, 13521 (1997) CrossRefADSGoogle Scholar
  37. 37.
    J. Kollár, L. Vitos, H. Skriver, in Electronic structure and physical properies of solids (Springer Berlin Heidelberg, Berlin, Heidelberg, 1999), pp. 85–114 Google Scholar
  38. 38.
    A. Östlin, L. Vitos, L. Chioncel, Phys. Rev. B 96, 125156 (2017) CrossRefADSGoogle Scholar
  39. 39.
    H. Levämäki, Developing exchange-correlation and kinetic energy functional approximations for density functional theory, University of Turku, 2018 Google Scholar
  40. 40.
    P. Haas, F. Tran, P. Blaha, K. Schwarz, R. Laskowski, Phys. Rev. B 80, 195109 (2009) CrossRefADSGoogle Scholar
  41. 41.
    G.I. Csonka, J.P. Perdew, A. Ruzsinszky, P.H.T. Philipsen, S. Lebègue, J. Paier, O.A. Vydrov, J.G. Ángyán, Phys. Rev. B 79, 155107 (2009) CrossRefADSGoogle Scholar
  42. 42.
    M. Fuchs, M. Bockstedte, E. Pehlke, M. Scheffler, Phys. Rev. B 57, 2134 (1998) CrossRefADSGoogle Scholar
  43. 43.
    A. Zupan, P. Blaha, K. Schwarz, J. Perdew, Phys. Rev. B 58, 11266 (1998) CrossRefADSGoogle Scholar
  44. 44.
    A.V. Ruban, I.A. Abrikosov, Rep. Prog. Phys. 71, 046501 (2008) CrossRefADSGoogle Scholar
  45. 45.
    W. Kohn, A.E. Mattsson, Phys. Rev. Lett. 81, 3487 (1998) CrossRefADSGoogle Scholar
  46. 46.
    R. Armiento, A. Mattsson, Phys. Rev. B 66, 1 (2002) CrossRefGoogle Scholar
  47. 47.
    A.E. Mattsson, R. Armiento, Int. J. Quantum Chem. 110, 2274 (2010) CrossRefGoogle Scholar
  48. 48.
    F. Hao, R. Armiento, A.E. Mattsson, Phys. Rev. B 82, 115103 (2010) CrossRefADSGoogle Scholar
  49. 49.
    J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Phys. Rev. Lett. 100, 136406 (2008) CrossRefADSGoogle Scholar
  50. 50.
    A.D. Becke, J. Chem. Phys. 140, 18A301 (2014) CrossRefGoogle Scholar
  51. 51.
    J. Sun, A. Ruzsinszky, J.P. Perdew, Phys. Rev. Lett. 115, 036402 (2015) CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2018. This article is published with open access at Springerlink.com 2018

Open AccessThis is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Applied Materials Physics, Department of Materials Science and Engineering, Royal Institute of TechnologyStockholmSweden
  2. 2.Department of Physics and AstronomyUniversity of TurkuTurkuFinland
  3. 3.Turku University Centre for Materials and Surfaces (MatSurf)TurkuFinland
  4. 4.Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of SciencesBudapestHungary
  5. 5.Department of Physics and AstronomyDivision of Materials Theory, Uppsala UniversityUppsalaSweden

Personalised recommendations