Advertisement

Fixed volume effect on polar properties and phase diagrams of ferroelectric semi-ellipsoidal nanoparticles

  • Eugene A. Eliseev
  • Victoria V. Khist
  • Yevhen M. Fomichov
  • Maxim V. Silibin
  • George S. Svechnikov
  • Andrei L. Kholkin
  • Dmitry V. Karpinsky
  • Vladimir V. Shvartsman
  • Anna N. Morozovska
Regular Article
  • 12 Downloads

Abstract

For advanced applications in modern industry, it is very important to reduce the volume of ferroelectric nanoparticles without serious deterioration of their polar properties. In many practically important cases, the fixed volume (rather than the fixed size) corresponds to realistic technological conditions of nanoparticles fabrication. The letter is focused on the theoretical study of the behavior of ferroelectric polarization, paramagnetoelectric coefficient and phase diagrams of semi-ellipsoidal nanoparticles with a fixed volume V. Our approach combines the Landau-Ginzburg-Devonshire phenomenology, the classical electrostatics, and the elasticity theory. Our results show that the size effects on the phase diagrams and polarization of semi-ellipsoidal BiFeO3 nanoparticles nontrivially depend on V. These findings provide a path to optimize the polar properties of nanoparticles by controlling their phase diagrams at a fixed volume.

Keywords

Statistical and Nonlinear Physics 

References

  1. 1.
    J.F. Scott, in Ferroelectric memories, Springer series in advanced microelectronics, edited by J.F. Scott (Springer Verlag, Berlin, 2000), Vol. 3, p. 248 Google Scholar
  2. 2.
    D.R. Tilley, Finite-size effects on phase transitions in ferroelectrics, in Ferroelectric thin films, edited by C. Paz de Araujo, J.F. Scott, G.W. Teylor (Gordon and Breach, Amsterdam, 1996), pp. 11–14 Google Scholar
  3. 3.
    A.K. Tagantsev, L.E. Cross, J. Fousek, Domains in ferroic crystals and thin films (Springer, New York, 2010) Google Scholar
  4. 4.
    M.D. Glinchuk, A.V. Ragulya, V.A. Stephanovich, in Nanoferroics (Springer, Dordrecht, 2013), p. 378 Google Scholar
  5. 5.
    D. Yadlovker, S. Berger, Phys. Rev. B 71, 184112-1 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    D. Yadlovker, S. Berger, Appl. Phys. Lett. 91, 173104 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    D. Yadlovker, S. Berger, J. Appl. Phys. 101, 034304 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk, Physica B 387, 358 (2007) ADSCrossRefGoogle Scholar
  9. 9.
    A.N. Morozovska, M.D. Glinchuk, E.A. Eliseev, Phys. Rev. B 76, 014102-1 (2007) ADSGoogle Scholar
  10. 10.
    M.H. Frey, D.A. Payne, Phys. Rev. B 54, 3158 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Phys. Rev. B 70, 024107-1 (2004) ADSGoogle Scholar
  12. 12.
    A.N. Morozovska, M.D. Glinchuk, J. Appl. Phys. 119, 094109 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    M.D. Glinchuk, E.A. Eliseev, A.N. Morozovska, Phys. Rev. B 78, 134107-1 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    P. Perriat, J.C. Niepce, G. Caboche, J. Therm. Anal. Calorim. 41, 635 (1994) CrossRefGoogle Scholar
  15. 15.
    M. Wenhui, Appl. Phys. A 96, 915 (2009) CrossRefGoogle Scholar
  16. 16.
    E. Erdem, H.-Ch. Semmelhack, R. Bottcher, H. Rumpf, J. Banys, A. Matthes, H.-J. Glasel, D. Hirsch, E. Hartmann, J. Phys. Condens. Matter 18, 3861 (2006) ADSCrossRefGoogle Scholar
  17. 17.
    H. Huang, C.Q. Sun, P. Hing, J. Phys.: Condens. Matter 12, L127 (2000) ADSGoogle Scholar
  18. 18.
    H. Huang, C.Q. Sun, Z. Tianshu, P. Hing, Phys. Rev. B 63, 184112 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    I.S. Golovina, S.P. Kolesnik, V. Bryksa, V.V. Strelchuk, I.B. Yanchuk, I.N. Geifman, S.A. Khainakov, S.V. Svechnikov, A.N. Morozovska, Physica B 407, 614 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    I.S. Golovina, V.P. Bryksa, V.V. Strelchuk, I.N. Geifman, A.A. Andriiko, J. Appl. Phys. 113, 144103 (2013) ADSCrossRefGoogle Scholar
  21. 21.
    I.S. Golovina, V.P. Bryksa, V.V. Strelchuk, I.N. Geifman, Funct. Mater. 20, 75 (2013) CrossRefGoogle Scholar
  22. 22.
    A.N. Morozovska, I.S. Golovina, S.V. Lemishko, A.A. Andriiko, S.A. Khainakov, E.A. Eliseev, Phys. Rev. B 90, 214103 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    E.A. Eliseev, A.N. Morozovska, M.D. Glinchuk, R. Blinc, J.Appl. Phys. 109, 094105 (2011) ADSCrossRefGoogle Scholar
  24. 24.
    T. Yu, Z.X. Shen, W.S. Toh, J.M. Xue, J. Wang, J. Appl. Phys. 94, 618 (2003) ADSCrossRefGoogle Scholar
  25. 25.
    H. Ke, D.C. Jia, W. Wang, Y. Zhou, Solid State Phenom. 121–123, 843 (2007) CrossRefGoogle Scholar
  26. 26.
    E.A. Eliseev, A.V. Semchenko, Y.M. Fomichov, M.D. Glinchuk, V.V. Sidsky, V.V. Kolos, Yu.M. Pleskachevsky, M.V. Silibin, N.V. Morozovsky, A.N. Morozovska, J. Appl. Phys. 119, 204104 (2016) ADSCrossRefGoogle Scholar
  27. 27.
    S. Goswami, D. Bhattacharya, P. Choudhury, J. Appl. Phys. 109, 07D737 (2011) CrossRefGoogle Scholar
  28. 28.
    M.D. Glinchuk, E.A. Eliseev, A.N. Morozovska, R. Blinc, Phys. Rev. B 77, 024106-1 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    V.V. Khist, E.A. Eliseev, M.D. Glinchuk, D.V. Karpinsky, M.V. Silibin, A.N. Morozovska, J. Alloys Compd. 714, 303 (2017) CrossRefGoogle Scholar
  30. 30.
    S. Layek, H.C. Verma, Adv. Mater. Lett. 3, 533 (2012) CrossRefGoogle Scholar
  31. 31.
    F. Huang, Z. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T.-T. Xu, J. He, C. Yue, J. Zhu, Sci. Rep. 3, 2907 (2013) ADSCrossRefGoogle Scholar
  32. 32.
    M. Hasan, M.A. Basith, M.A. Zubair, M.S. Hossain, R. Mahbub, M.A. Hakim, M.F. Islam, J. Alloys Compd. 687, 701 (2016) CrossRefGoogle Scholar
  33. 33.
    T. Wang, T. Xu, S. Gao, S.-H. Song, Ceram. Int. 43, 4489 (2017) CrossRefGoogle Scholar
  34. 34.
    P.P. Khirade, S.D. Birajdar, A.B. Shinde, K.M. Jadhav, J. Alloys Compd. 691, 287 (2017) CrossRefGoogle Scholar
  35. 35.
    C. Peng, X. Xu, C. Koenigsmann, A.C. Santulli, S.S. Wong, J.L. Musfeldt, Nano Lett. 10, 4526 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    V. Annapu Reddy, N.P. Pathak, R. Nath, J. Alloys Compd. 543, 206 (2012) CrossRefGoogle Scholar
  37. 37.
    X. Bai, J. Wei, B. Tian, Y. Liu, T. Reiss, N. Guiblin, P. Gemeiner, B. Dkhil, I.C. Infante, J. Phys. Chem. C 120, 3595 (2016) CrossRefGoogle Scholar
  38. 38.
    J. Hoon Jeon, H.-Y. Joo, Y.-M. Kim, D. Hyun Lee, J.-S. Kim, Y.S. Kim, T. Choi, B.H. Park, Sci. Rep. 6, 23299 (2016) ADSCrossRefGoogle Scholar
  39. 39.
    S. Hong et al., Adv. Mater. 25, 2339 (2013) CrossRefGoogle Scholar
  40. 40.
    T. Sakamoto, K. Okada, A.N. Hattori, T. Kanki, A.S. Borowiak, B. Gautier, B. Vilquin, H. Tanaka, J. Appl. Phys. 113, 104302 (2013) ADSCrossRefGoogle Scholar
  41. 41.
    X. Zhang, B. Wang, X. Wang, X. Xiao, Z. Dai, W. Wu, J. Zheng, F. Ren, C. Jiang, J. Am. Ceram. Soc. 98, 2255 (2015) CrossRefGoogle Scholar
  42. 42.
    M. Fiebig, J. Phys. D: Appl. Phys. 38, R123 (2005) ADSCrossRefGoogle Scholar
  43. 43.
    N.A. Spaldin, M. Fiebig, Science 309, 391 (2005) CrossRefGoogle Scholar
  44. 44.
    J.M. Rondinelli, N.A. Spaldin, Adv. Mater. 23, 3363 (2011) CrossRefGoogle Scholar
  45. 45.
    A.P. Pyatakov, A.K. Zvezdin, Phys. Usp. 55, 557 (2012) ADSCrossRefGoogle Scholar
  46. 46.
    J.F. Scott, Nat. Mater. 6, 256 (2007) ADSCrossRefGoogle Scholar
  47. 47.
    R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007) ADSCrossRefGoogle Scholar
  48. 48.
    P. Fischer, M. Polomska, I. Sosnowska, M. Szymanski, J. Phys. C: Solid State Phys. 13, 1931 (1980) ADSCrossRefGoogle Scholar
  49. 49.
    G. Catalan, J.F. Scott, Adv. Mater. 21, 1 (2009) CrossRefGoogle Scholar
  50. 50.
    F. Huang et al., Sci. Rep. 3, 2907 (2013) CrossRefGoogle Scholar
  51. 51.
    S.M. Selbach, T. Tybell, M.-A. Einarsrud, T. Grande, Chem. Mater. 19, 6478 (2007) CrossRefGoogle Scholar
  52. 52.
    M.E. Castillo, V.V. Shvartsman, D. Gobeljic, Y. Gao, J. Landers, H. Wende, D.C. Lupascu, Nanotechnology 24, 355701 (2013) CrossRefGoogle Scholar
  53. 53.
    A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk, Phys. Rev. B 73, 214106 (2006) ADSCrossRefGoogle Scholar
  54. 54.
    A.N. Morozovska, E.A. Eliseev, J. Appl. Phys. 107, 044101 (2010) ADSCrossRefGoogle Scholar
  55. 55.
    A.K. Tagantsev, G. Gerra, J. Appl. Phys. 100, 051607 (2006) ADSCrossRefGoogle Scholar
  56. 56.
    I.S. Vorotiahin, E.A. Eliseev, Q. Li, S.V. Kalinin, Y.A. Genenko, A.N. Morozovska, Acta Mater. 137, 85 (2017) CrossRefGoogle Scholar
  57. 57.
    E.A. Eliseev, I.S. Vorotiahin, Y.M. Fomichov, M.D. Glinchuk, S.V. Kalinin, Y.A. Genenko, A.N. Morozovska, Phys. Rev. B 97, 024102 (2018) ADSCrossRefGoogle Scholar
  58. 58.
    E.A. Eliseev, Y.M. Fomichov, S.V. Kalinin, Y.M. Vysochanskii, P. Maksymovich, A.N. Morozovska, arXiv:1801.03545 (2018)
  59. 59.
    A.N. Morozovska, E.A. Eliseev, Y. Li, S.V. Svechnikov, P. Maksymovych, V.Y. Shur, V. Gopalan, L.-Q. Chen, S.V. Kalinin, Phys. Rev. B 80, 214110 (2009) ADSCrossRefGoogle Scholar
  60. 60.
    S.-L. Hou, N. Bloembergen, Phys. Rev. 138, A1218 (1965) ADSCrossRefGoogle Scholar
  61. 61.
    V.V. Shvartsman, S. Bedanta, P. Borisov, W. Kleemann, A. Tkach, P.M. Vilarinho, Phys. Rev. Lett. 101, 165704 (2008) ADSCrossRefGoogle Scholar
  62. 62.
    B. Howes, M. Pelizzone, P. Fischer, C. Tabares-Munoz, J.-p. Rivera, H. Schmid, Ferroelectrics 54, 317 (1984) CrossRefGoogle Scholar
  63. 63.
    T. Watanabe, K. Kohn, Phase Transit. 15, 57 (1989) CrossRefGoogle Scholar
  64. 64.
    W. Kleemann, V.V. Shvartsman, P. Borisov, A. Kania, Phys. Rev. Lett. 105, 257202 (2010) ADSCrossRefGoogle Scholar
  65. 65.
    W. Wang, L.-Q. Yan, J.-Z. Cong, Y.-L. Zhao, F. Wang, S.-P. Shen, T. Zou, D. Zhang, S.-G. Wang, X.-F. Han, Y. Sun, Sci. Rep. 3, 2024 (2013) CrossRefGoogle Scholar
  66. 66.
    V.V. Laguta, A.N. Morozovska, E.A. Eliseev, I.P. Raevski, S.I. Raevskaya, E.I. Sitalo, S.A. Prosandeev, L. Bellaiche, J. Mater. Sci. 51, 5330 (2016) ADSCrossRefGoogle Scholar
  67. 67.
    S. Prosandeev, I.A. Kornev, L. Bellaiche, Phys. Rev. B 83, 020102 (2011) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Eugene A. Eliseev
    • 1
  • Victoria V. Khist
    • 2
  • Yevhen M. Fomichov
    • 1
  • Maxim V. Silibin
    • 3
    • 4
  • George S. Svechnikov
    • 5
  • Andrei L. Kholkin
    • 6
  • Dmitry V. Karpinsky
    • 3
    • 7
  • Vladimir V. Shvartsman
    • 8
  • Anna N. Morozovska
    • 9
  1. 1.Institute for Problems of Materials Science, National Academy of Sciences of UkraineKyivUkraine
  2. 2.Institute of Magnetism, National Academy of Sciences of Ukraine and Ministry of Education and Science of UkraineKyivUkraine
  3. 3.National Research University of Electronic Technology “MIET”Moscow, ZelenogradRussia
  4. 4.Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical UniversityMoscowRussia
  5. 5.Sikorsky Kyiv Polytechnic InstituteKyivUkraine
  6. 6.Department of Physics and CICECO – Materials Institute of AveiroUniversity of AveiroAveiroPortugal
  7. 7.Scientific-Practical Materials Research Centre of NAS of BelarusMinskBelarus
  8. 8.Institute for Materials Science and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-EssenEssenGermany
  9. 9.Institute of Physics, National Academy of Sciences of UkraineKyivUkraine

Personalised recommendations