Skip to main content
Log in

Surface tension and Curie temperature in ferroelectric nanowires and nanodots

  • Published:
Applied Physics A Aims and scope Submit manuscript

An Erratum to this article was published on 16 July 2009

Abstract

The effect of surface tension associated internal pressure on the Curie phase transition in ferroelectric nanowires and nanodots has been investigated using a modified Landau–Ginzburg–Devonshire phenomenological approach. Based on experimental data on the size- dependent phase transition in freely suspended single-crystalline ferroelectric nanocrystals, bulk surface tension coefficients for BaTiO3 and PbTiO3 have been determined to be of the order of 1–2 N/m. The present theoretical study reproduces the size dependence of the transition temperature experimentally acquired in individual BaTiO3 single-crystalline nanowires. In the case of PbTiO3 single-crystalline nanodots, however, in order to fit the theoretically calculated size-dependent ferroelectric transition with the experimental data, an effective surface tension coefficient has been introduced, which is size dependent and can be much higher than the bulk value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ishikawa, K. Yoshikawa, N. Okada, Phys. Rev. B 37, 5852 (1988)

    Article  ADS  Google Scholar 

  2. K. Uchino, E. Sadanaga, T. Hirose, J. Am. Ceram. Soc. 72, 1555 (1989)

    Article  Google Scholar 

  3. W.L. Zhong, B. Jiang, P.L. Zhang, J.M. Ma, H.M. Cheng, Z.H. Yang, L.X. Li, J. Phys., Condens. Matter 5, 2619 (1993)

    Article  ADS  Google Scholar 

  4. K. Ishikawa, T. Nomura, N. Okada, K. Takada, Jpn. J. Appl. Phys. 35, 5196 (1996)

    Article  ADS  Google Scholar 

  5. W. Ma, M. Zhang, Z. Lu, Phys. Status Solidi A 166, 811 (1998)

    Article  ADS  Google Scholar 

  6. W. Ma, D. Hesse, Appl. Phys. Lett. 84, 2871 (2004)

    Article  ADS  Google Scholar 

  7. M.W. Chu, I. Szafraniak, R. Scholz, C. Harnagea, D. Hesse, M. Alexe, U. Gösele, Nat. Mater. 3, 87 (2004)

    Article  ADS  Google Scholar 

  8. X. Li, W.H. Shih, J. Am. Ceram. Soc. 80, 2844 (1997)

    Article  Google Scholar 

  9. W.L. Zhong, Y.G. Wang, P.L. Zhang, B.D. Qu, Phys. Rev. B 50, 698 (1994)

    Article  ADS  Google Scholar 

  10. M.D. Glinchuk, A.N. Morozovska, Phys. Status Solidi B 238, 81 (2003)

    Article  ADS  Google Scholar 

  11. H. Huang, C.Q. Sun, P. Hing, J. Phys., Condens. Matter 12, L127 (2000)

    Article  ADS  Google Scholar 

  12. J.J. Urban, J.E. Spanier, L. Ouyang, W.S. Yun, H. Park, Adv. Mater. 15, 423 (2003)

    Article  Google Scholar 

  13. Z.H. Zhou, X.S. Gao, J. Wang, K. Fujihara, S. Ramakrishna, V. Nagarajan, Appl. Phys. Lett. 90, 052902 (2007)

    Article  ADS  Google Scholar 

  14. J. Wang, C.S. Sandu, E. Colla, Y. Wang, W. Ma, R. Gysel, H.J. Trodahl, N. Setter, M. Kuball, Appl. Phys. Lett. 90, 133107 (2007)

    Article  ADS  Google Scholar 

  15. G. Geneste, E. Bousquet, J. Junquera, P. Ghosez, Appl. Phys. Lett. 88, 112906 (2006)

    Article  ADS  Google Scholar 

  16. J.E. Spanier, A.M. Kolpak, J.J. Urban, I. Grinberg, L. Ouyang, W.S. Yun, A.M. Rappe, H. Park, Nano Lett. 6, 735 (2006)

    Article  ADS  Google Scholar 

  17. A.N. Morozovska, E.A. Eliseev, M.D. Glinchuk, Phys. Rev. B 73, 214106 (2006)

    Article  ADS  Google Scholar 

  18. J. Hong, D. Fang, Appl. Phys. Lett. 92, 012906 (2008)

    Article  ADS  Google Scholar 

  19. Z. Wang, Thermodynamics, 2nd edn. (Peking University, Beijing, 2005) (in Chinese)

    Google Scholar 

  20. G.A. Samara, Ferroelectrics 2, 277 (1971)

    Google Scholar 

  21. P.W. Forsbergh, Phys. Rev. 93, 686 (1954)

    Article  MATH  ADS  Google Scholar 

  22. F. Jona, G. Shirane, Ferroelectric Crystals (Dover, New York, 1993)

    Google Scholar 

  23. M.J. Haun, E. Furman, S.J. Jang, H.A. McKinstry, L.E. Cross, J. Appl. Phys. 62, 3331 (1987)

    Article  ADS  Google Scholar 

  24. G. Jura, C.W. Garland, J. Am. Chem. Soc. 74, 6033 (1952)

    Article  Google Scholar 

  25. R.C. Garvie, J. Phys. Chem. 69, 1238 (1965)

    Article  Google Scholar 

  26. H. Zhang, J.F. Banfield, J. Mater. Chem. 8, 2073 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhui Ma.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00339-009-5316-x

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, W. Surface tension and Curie temperature in ferroelectric nanowires and nanodots. Appl. Phys. A 96, 915–920 (2009). https://doi.org/10.1007/s00339-009-5246-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00339-009-5246-7

PACS

Navigation