A generalised Davydov-Scott model for polarons in linear peptide chains

Open Access
Regular Article

Abstract

We present a one-parameter family of mathematical models describing the dynamics of polarons in periodic structures, such as linear polypeptides, which, by tuning the model parameter, can be reduced to the Davydov or the Scott model. We describe the physical significance of this parameter and, in the continuum limit, we derive analytical solutions which represent stationary polarons. On a discrete lattice, we compute stationary polaron solutions numerically. We investigate polaron propagation induced by several external forcing mechanisms. We show that an electric field consisting of a constant and a periodic component can induce polaron motion with minimal energy loss. We also show that thermal fluctuations can facilitate the onset of polaron motion. Finally, we discuss the bio-physical implications of our results.

Keywords

Mesoscopic and Nanoscale Systems 

References

  1. 1.
    L.D. Landau, Phys. Z. Sowjet. 3, 664 (1933)Google Scholar
  2. 2.
    H. Fröhlich, Proc. R. Soc. Lond. A 215, 291 (1952)ADSCrossRefGoogle Scholar
  3. 3.
    T. Holstein, Ann. Phys. 8, 325 (1959)ADSCrossRefGoogle Scholar
  4. 4.
    T. Holstein, Ann. Phys. 8, 343 (1959)ADSCrossRefGoogle Scholar
  5. 5.
    A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.-P. Su, Rev. Mod. Phys. 60, 781 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    N.K. Voulgarakis, G.P. Tsironis, Phys. Rev. B 63, 014302 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, Phys. Rev. B 68, 104301 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    A.S. Davydov, Phys. Scripta 20, 387 (1979)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    A.C. Scott, Phys. Rep. 217, 1 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    G.N. Chuev, V.D. Lakhno, J. Theor. Biol. 163, 51 (1993)CrossRefGoogle Scholar
  11. 11.
    E.M. Conwell, S.V. Rakhmanova, Proc. Natl. Acad. Sci. USA 97, 4556 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, J. Phys. Condens. Matter 20, 255242 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, J. Phys. Condens. Matter 22, 155105 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, Phys. Rev. E 89, 062905 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    A.S. Davydov, Sov. Phys. Usp. 25, 898 (1982)ADSCrossRefGoogle Scholar
  16. 16.
    A.S. Davydov, Solitons in Molecular Systems, 2nd ed. (Kluwer Academic Publishers, 1991)Google Scholar
  17. 17.
    J.C. Eilbeck, P.S. Lomdahl, A.C. Scott, Phys. Rev. B 30, 4703 (1984)ADSCrossRefGoogle Scholar
  18. 18.
    A.L. Lehninger, D.L. Nelson, M.M. Cox, Principles of Biochemistry, 2nd ed. (Worth Publishers, New York, 1993)Google Scholar
  19. 19.
    W. Barford, J. Chem. Phys. 126, 134905 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    D.N. Langelaan, M. Wieczorek, C. Blouin, J.K. Rainey, J. Chem. Inf. Model. 50, 2213 (2010)CrossRefGoogle Scholar
  21. 21.
    K.G. Brown, S.C. Erfurth, E.W. Small, W.L. Peticolas, Proc. Natl. Acad. Sci. USA 69, 1467 (1972)ADSCrossRefGoogle Scholar
  22. 22.
    K.-C. Chou, Biochem. J. 209, 573 (1983)CrossRefGoogle Scholar
  23. 23.
    K.-C. Chou, Biophys. J. 45, 881 (1984)ADSCrossRefGoogle Scholar
  24. 24.
    D.S. Lemons, A. Gythiel, Am. J. Phys. 65, 1079 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    T. Schlick, Molecular Modeling and Simulation, 2nd ed. (Springer, 2010)Google Scholar
  26. 26.
    D. Hennig, Phys. Rev. E 64, 041908 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    G. Kalosakas, S. Aubry, G.P. Tsironis, Phys. Rev. B 58, 3094 (1998)ADSCrossRefGoogle Scholar
  28. 28.
    M. Luckey, Membrane Structural Biology, 2nd ed. (Newblock CUP, 2014)Google Scholar
  29. 29.
    K. Bugge, E. Papaleo, G.W. Haxholm, J.T.S. Hopper, C.V. Robinson, J.G. Olsen, K. Lindorff-Larsen, B.B. Kragelund, Nat. Commun. 7, 11578 (2016)ADSCrossRefGoogle Scholar
  30. 30.
    J. Ma, M. Yoshimura, E. Yamashita, A. Nakagawa, A. Ito, T. Tsukihara, J. Mol. Biol. 338, 103 (2004)CrossRefGoogle Scholar
  31. 31.
    J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1999)Google Scholar
  32. 32.
    K. Cheng, H.C. Haspel, M.L. Vallano, B. Osotimehin, M. Sonenberg, J. Membr. Biol. 56, 191 (1980)CrossRefGoogle Scholar
  33. 33.
    L. McCaughan, S. Krimm, Science 207, 1481 (1980)ADSCrossRefGoogle Scholar
  34. 34.
    R.M. Hochmuth, C.A. Evans, H.C. Wiles, J.T. McCown, Science 220, 101 (1983)ADSCrossRefGoogle Scholar
  35. 35.
    D.L. Mobley, K.A. Dill, J.D. Chodera, J. Phys. Chem. B 112, 938 (2008)CrossRefGoogle Scholar
  36. 36.
    V.Z. Spassov, L. Yan, Prot. Sci. 17, 1955 (2008)CrossRefGoogle Scholar
  37. 37.
    S. Vicatos, M. Roca, A. Warshel, Proteins 77, 670 (2009)CrossRefGoogle Scholar
  38. 38.
    L. Li, C. Li, Z. Zhang, E. Alexov, J. Chem. Theory Comput. 9, 2126 (2013)CrossRefGoogle Scholar
  39. 39.
    IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012), 2012, doi: 10.1109/IEEESTD.2012.6392842Google Scholar
  40. 40.
    IEEE Std 521-2002 (Revision of IEEE Std 521-1984), 2003, doi: 10.1109/IEEESTD.2003.94224Google Scholar
  41. 41.
    S. Lönn, U. Forssén, P. Vecchia, A. Ahlbom, M. Feychting, Occup. Environ. Med. 61, 769 (2004)CrossRefGoogle Scholar
  42. 42.
    L.S. Brizhik, A.A. Eremko, B.M.A.G. Piette, W.J. Zakrzewski, Phys. Rev. E 70, 031914 (2004)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Department of Mathematical SciencesDurham UniversityDurhamUK

Personalised recommendations