Skip to main content
Log in

Effect of the Fraction and Size of Polar Groups on the Formation of Compact Conformations of a Polymer Chain with Variable Stiffness in Low-Polar Media

  • ON THE 80th ANNIVERSARY OF THE BIRTH OF A. B. ZEZIN
  • Published:
Polymer Science, Series B Aims and scope Submit manuscript

Abstract

The conformational behavior of a single semiflexible polymer chain with a variable fraction of polar groups (dipoles) is studied by the molecular dynamics method. Dipoles of the chain are simulated as two oppositely charged beads, one of which belongs to the backbone and another bead is a side group. The charged bead of the side group may freely rotate around the backbone, and the size of the side bead and the distance between oppositely charged groups (dipole length) are varied. The main attention is focused on studying the effect of backbone stiffness and an interplay of excluded volume and electrostatic interactions on the conformational behavior of a chain and the structure of multiplets formed due to a strong electrostatic attraction in low-polar media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971).

    Google Scholar 

  2. M. Muthukumar, Macromolecules 50, 9528 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T. M. Birshtein, E. B. Zhulina, and O. V. Borisov, Vysokomol. Soedin., Ser. A 38, 657 (1996).

    CAS  Google Scholar 

  4. E. B. Zhulina, O. V. Borisov, and T. M. Birshtein, Macromolecules 32, 8189 (1999).

    Article  CAS  Google Scholar 

  5. A. B. Zezin and V. A. Kabanov, Russ. Chem. Rev. 51, 833 (1982).

    Article  Google Scholar 

  6. V. A. Kabanov and A. B. Zezin, Pure Appl. Chem. 56, 343 (1984).

    Article  CAS  Google Scholar 

  7. D. V. Pergushov, E. V. Remizova, J. Feldthusen, A. B. Zezin, A. H. Müller, and V. A. Kabanov, J. Phys. Chem. B 107, 8093 (2003).

    Article  CAS  Google Scholar 

  8. S. Förster, V. Abetz, and A. H. E. Müller, Polyelectrolyte Block Copolymer Micelles. Polyelectrolytes with Defined Molecular Architecture II (Springer, Berlin; Heidelberg, 2004).

    Google Scholar 

  9. E. A. Lysenko, A. I. Kulebyakina, P. S. Chelushkin, A. M. Rumyantsev, E. Yu. Kramarenko, and A. B. Zezin, Langmuir 28, 12663 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  11. E. Yu. Kramarenko, O. E. Philippova, and A. R. Khokhlov, Polym. Sci., Ser. C 48, 1 (2006).

    Article  Google Scholar 

  12. O. E. Philippova, Polym. Sci., Ser. C 42, 208 (2000).

    Google Scholar 

  13. O. E. Philippova, A. M. Rumyantsev, E. Yu. Kramarenko, and A. R. Khokhlov, Macromolecules 46, 9359 (2013).

    Article  CAS  Google Scholar 

  14. S. Schimka, Yu. D. Gordievskaya, N. Lomadze, M. Lehmann, R. von Klitzing, A. M. Rumyantsev, E. Yu. Kramarenko, and S. Santer, J. Chem. Phys. 147, 031101 (2017).

    Article  PubMed  CAS  Google Scholar 

  15. D. Mecerreyes, Prog. Polym. Sci. 36, 1629 (2011).

    Article  CAS  Google Scholar 

  16. O. Green, S. Grubjesic, S. Lee, and M. A. Firestone, Polym. Rev. 49, 339 (2009).

    Article  CAS  Google Scholar 

  17. H. Yu, T. D. Ho, and J. L. Anderson, TrAC, Trends Anal. Chem. 45, 219 (2013).

    Article  CAS  Google Scholar 

  18. T. Boudou, T. Crouzier, K. Ren, G. Blin, and C. Picart, Adv. Mater. 22 (4), 441 (2010).

    Article  CAS  PubMed  Google Scholar 

  19. B. G. De Geest, S. De Koker, G. B. Sukhorukov, O. Kreft, W. J. Parak, A. G. Skirtach, and W. E. Hennink, Soft Matter 5, 282 (2009).

    Article  CAS  Google Scholar 

  20. A. Eisenberg, B. Hird, and R. B. Moore, Macromolecules 23, 4098 (1990).

    Article  CAS  Google Scholar 

  21. M. Pineri and A. Eisenberg, Structure and Properties of Ionomers (Springer Science and Business Media, New York, 2012).

    Google Scholar 

  22. S. Kudaibergenov, W. A. Jaeger, and A. Laschewsky, in Supramolecular Polymers Polymeric Betains Oligomers (Springer, New York, 2006), p. 157.

    Google Scholar 

  23. A. B. Lowe and C. L. McCormick, Chem. Rev. 102, 4177 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. A. Laschewsky, Polymers 6, 1544 (2014).

    Article  CAS  Google Scholar 

  25. X. Huang, P. Jiang, and T. Tanaka, IEEE Electr. Insul. Mag. 27 (4), 8 (2011).

    Article  Google Scholar 

  26. Electroactive Polymer (EAP) Actuators as Artificial Muscles: Reality, Potential, and Challenges, Ed. by Y. Bar-Cohen (SPIE Press, Bellingham, 2004), Vol. 136.

    Google Scholar 

  27. A. O’Halloran, F. O’malley, and P. McHugh, J. Appl. Phys. 104 (7), 9 (2008).

    Article  CAS  Google Scholar 

  28. P. K. Singh, V. K. Singh, and M. Singh, e-Polym. 7, 1 (2007).

  29. M. Singh and N. Tarannum, “Polyzwitterion,” in Engineering of Biomaterials for Drug Delivery Systems, Ed. by A. Parambath (Woodhead Publ.; Elsevier, Duxford; Cambridge; Kidlington, 2018), p. 69.

  30. P. Ariano, D. Accardo, M. Lombardi, S. Bocchini, L. Draghi, L. De Nardo, and P. Fino, J. Appl. Biomater. Funct. Mater. 13, 1 (2015).

    CAS  PubMed  Google Scholar 

  31. P. Brochu and Q. Pei, Macromol. Rapid Commun. 31, 10 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. R. Kumar and G. H. Fredrickson, J. Chem. Phys. 131, 104901 (2009).

    Article  CAS  Google Scholar 

  33. A. G. Cherstvy, J. Phys. Chem. B 114, 5241 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. Y. D. Gordievskaya, Y. A. Budkov, and E. Y. Kramarenko, Soft Matter 14, 3232 (2018).

    Article  CAS  PubMed  Google Scholar 

  35. Y. A. Budkov, N. N. Kalikin, and A. L. Kolesnikov, Eur. Phys. J. E: Soft Matter Biol. Phys. 40 (4), 47 (2017).

    Article  CAS  Google Scholar 

  36. H. Schiessel and P. Pincus, Macromolecules 31, 7953 (1998).

    Article  CAS  Google Scholar 

  37. R. Kumar, B. G. Sumpter, and M. Muthukumar, Macromolecules 47 (18), 6491 (2014).

    Article  CAS  Google Scholar 

  38. L. C. Gosule and J. A. Schellman, Nature 259 (5541), 333 (1976).

    Article  CAS  PubMed  Google Scholar 

  39. H. Noguchi, S. Saito, S. Kidoaki, and K. Yoshikawa, Chem. Phys. Lett. 261, 527 (1996).

    Article  CAS  Google Scholar 

  40. T. Iwaki, N. Makita, and K. Yoshikawa, J. Chem. Phys. 129, B605 (2008).

    Article  CAS  Google Scholar 

  41. J. Ubbink and T. Odijk, Biophys. J. 68, 54 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. M. R. Stukan, E. A. An, V. A. Ivanov, and O. I. Vinogradova, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 73, 051804 (2006).

    Google Scholar 

  43. T. X. Hoang, A. Giacometti, R. Podgornik, N. T. Nguyen, J. R. Banavar, and A. Maritan, J. Chem. Phys. 140, B612 (2014).

    Article  CAS  Google Scholar 

  44. Z. Ou and M. Muthukumar, J. Chem. Phys. 123, 074905 (2005).

    Article  PubMed  CAS  Google Scholar 

  45. J. Zierenberg, M. Marenz, and W. Janke, Polymers 8, 333 (2016).

    Article  PubMed Central  CAS  Google Scholar 

  46. J. A. Martemyanova, M. R. Stukan, V. A. Ivanov, M. Müller, W. Paul, and K. Binder, J. Chem. Phys. 122, 174907 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. K. Kremer and G. S. Grest, J. Chem. Phys. 92, 5057 (1990).

    Article  CAS  Google Scholar 

  48. Yu. D. Gordievskaya and E. Yu. Kramarenko, Polym. Sci., Ser. C 60 (2), 37 (2018).

    Article  CAS  Google Scholar 

  49. Z. Wang and M. Rubinstein, Macromolecules 39, 5897 (2006).

    Article  CAS  Google Scholar 

  50. N. V. Brilliantov, D. V. Kuznetsov, and R. Klein, Phys. Rev. Lett. 81, 1433 (1998).

    Article  CAS  Google Scholar 

  51. R. Winkler, M. Gold, and P. Reineker, Phys. Rev. Lett. 80, 3731 (1998).

    Article  CAS  Google Scholar 

  52. A. V. Dobrynin, R. H. Colby, and M. Rubinstein, J. Polym. Sci., Part B: Polym. Phys. 42, 3513 (2004).

    Article  CAS  Google Scholar 

  53. Yu. D. Gordievskaya, A. A. Gavrilov, and E. Yu. Kramarenko, Soft Matter 14, 1474 (2018).

    Article  CAS  PubMed  Google Scholar 

  54. A. M. Rumyantsev, A. Pan, S. G. Roy, P. De, and E. Yu. Kramarenko, Macromolecules 49, 6630 (2016).

    Article  CAS  Google Scholar 

  55. Yu. D. Gordievskaya and E. Yu. Kramarenko, Soft Matter 15, 6073 (2019).

    Article  CAS  PubMed  Google Scholar 

  56. D. Maltseva, S. Zablotskiy, J. Martemyanova, V. Ivanov, T. Shakirov, and W. Paul, Polymers 11, 757 (2019).

    Article  PubMed Central  CAS  Google Scholar 

  57. M. J. Stevens, Biophys. J. 80, 130 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Funding

This work was supported by the Russian Ministry of Education and Science, Grant of the Government of the Russian Federation no. 14.W03.31.0018. Yu.D. Gordievskaya is grateful to the Foundation for the Advancement of Theoretical Physics and Mathematics BASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kramarenko.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gordievskaya, Y.D., Kramarenko, E.Y. Effect of the Fraction and Size of Polar Groups on the Formation of Compact Conformations of a Polymer Chain with Variable Stiffness in Low-Polar Media. Polym. Sci. Ser. B 61, 704–714 (2019). https://doi.org/10.1134/S1560090419060046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560090419060046

Navigation