Skip to main content
Log in

A standard basis operator equation of motion impurity solver for dynamical mean field theory

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present an efficient impurity solver for the dynamical mean-field theory (DMFT). It is based on the separation of bath degrees of freedom into the low energy and the high energy parts. The former is solved exactly using exact diagonalization and the latter is treated approximately using Green’s function equation of motion decoupling approximation. The two parts are combined coherently under the standard basis operator formalism. The impurity solver is applied to the Anderson impurity model and, combined with DMFT, to the one-band Hubbard model. Qualitative agreement is found with other well established methods. Some promising features and possible improvements of the present solver are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Metzner, D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989)

    Article  ADS  Google Scholar 

  2. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  3. K. Held, Adv. Phys. 56, 829 (2007)

    Article  ADS  Google Scholar 

  4. A. Liebsch, Phys. Rev. B 70, 165103 (2004)

    Article  ADS  Google Scholar 

  5. P. Werner, A.J. Millis, Phys. Rev. Lett. 99, 126405 (2007)

    Article  ADS  Google Scholar 

  6. A. Georges, L. de Medici, J. Mravlje, Annu. Rev. Condens. Matter Phys. 4, 137 (2013)

    Article  ADS  Google Scholar 

  7. G. Kotliar, S.Y. Savrasov, G. Pálsson, G. Biroli, Phys. Rev. Lett. 87, 186401 (2001)

    Article  ADS  Google Scholar 

  8. M.H. Hettler et al., Phys. Rev. B. 58, R7475 (1998)

    Article  ADS  Google Scholar 

  9. T. Maier, M. Jarrell, T. Pruschke, M.H. Hettler, Rev. Mod. Phys. 77, 1027 (2005)

    Article  ADS  Google Scholar 

  10. J.E. Hirsch, R.M. Fye, Phys. Rev. Lett. 56, 2521 (1986)

    Article  ADS  Google Scholar 

  11. N. Blümer, Phys. Rev. B 76, 205120 (2007)

    Article  ADS  Google Scholar 

  12. P. Werner et al., Phys. Rev. Lett. 97, 076405 (2006)

    Article  ADS  Google Scholar 

  13. P. Werner, A.J. Millis, Phys. Rev. B 74, 155107 (2006)

    Article  ADS  Google Scholar 

  14. A.N. Rubtsov, A.I. Lichtenstein, J. Exp. Theor. Phys. Lett. 80, 61 (2004)

    Article  Google Scholar 

  15. E. Gull et al., Rev. Mod. Phys. 83, 349 (2011)

    Article  ADS  Google Scholar 

  16. M. Jarrell, J. Gubernatis, Phys. Rep. 269, 133 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  17. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  18. R. Bulla, Theo A. Costi, T. Pruschke, Rev. Mod. Phys. 80, 395 (2008)

    Article  ADS  Google Scholar 

  19. M. Caffarel, W. Krauth, Phys. Rev. Lett. 72, 1545 (1994)

    Article  ADS  Google Scholar 

  20. Q. Si, M.J. Rozenberg, K. Kotliar, A.E. Ruckenstein, Phys. Rev. Lett. 72, 2761 (1994)

    Article  ADS  Google Scholar 

  21. M.J. Rozenberg, G. Moeller, G. Kotliar, Mod. Phys. Lett. B 8, 535 (1994)

    Article  ADS  Google Scholar 

  22. A. Liebsch, Phys. Rev. B 84, 180505(R) (2011)

    Article  ADS  Google Scholar 

  23. A. Georges, G. Kotliar, Phys. Rev. B 45, 6479 (1992)

    Article  ADS  Google Scholar 

  24. X. Dai, K. Haule, G. Kotliar, Phys. Rev. B 72, 045111 (2005)

    Article  ADS  Google Scholar 

  25. J.N. Zhuang, Q.M. Liu, Z. Fang, X. Dai, Chin. Phys. B 19, 087104 (2010)

    Article  ADS  Google Scholar 

  26. K. Aryanpour, M.H. Hettler, M. Jarrell, Phys. Rev. B 67, 085101 (2003)

    Article  ADS  Google Scholar 

  27. N.E. Bickers, Rev. Mod. Phys. 59, 845 (1987)

    Article  ADS  Google Scholar 

  28. T. Pruschke, D.L. Cox, M. Jarrell, Phys. Rev. B 47, 3553 (1993)

    Article  ADS  Google Scholar 

  29. K. Haule, S. Kirchner, J. Kroha, P. Wölflle, Phys. Rev. B 64, 155111 (2001)

    Article  ADS  Google Scholar 

  30. J.N. Zhuang, L. Wang, Z. Fang, X. Dai, Phys. Rev. B 79 165114 (2009)

    Article  ADS  Google Scholar 

  31. C. Gros, Phys. Rev. B 50, 7295 (1994)

    Article  ADS  Google Scholar 

  32. H.O. Jeschke, G. Kotliar, Phys. Rev. B 71, 085103 (2005)

    Article  ADS  Google Scholar 

  33. J.X. Zhu, R.C. Albers, G. Kotliar, Mod. Phys. Lett. B 20, 1629 (2006)

    Article  ADS  Google Scholar 

  34. Q. Feng, Y.Z. Zhang, H.O. Jeschke, Phys. Rev. B79, 235112 (2009)

  35. Q. Feng, P.M. Oppeneer, J. Phys.: Condens. Matter 24, 055603 (2012)

    ADS  Google Scholar 

  36. H. Hafermann et al., Europhys. Lett. 85, 27007 (2009)

    Article  ADS  Google Scholar 

  37. J.P. Julien, R.C. Albers, arXiv:0810.3302 (2008)

  38. M. Granath, H.U.R. Strand, Phys. Rev. B 86, 115111 (2012)

    Article  ADS  Google Scholar 

  39. R.Q. He, Z.Y. Lu, Phys. Rev. B 89, 085108 (2014)

    Article  ADS  Google Scholar 

  40. Y. Lu, M. Höppner, O. Gunnarsson, M.W. Haverkort, Phys. Rev. B 90, 085102 (2014)

    Article  ADS  Google Scholar 

  41. Z.H. Li et al., Phys. Rev. Lett. 109, 266403 (2012)

    Article  ADS  Google Scholar 

  42. D. Hou et al., Phys. Rev. B 90, 045141 (2014)

    Article  ADS  Google Scholar 

  43. J. Hubbard, Proc. R. Soc. London 281, 401 (1964)

    Article  ADS  Google Scholar 

  44. F. Gebhard, The Mott Metal-Insulator Transition (Springer-Verlag, Berlin, Heidelberg, 1997)

  45. S.B. Haley, P. Erdös, Phys. Rev. B 5, 1106 (1972)

    Article  ADS  Google Scholar 

  46. S.B. Haley, Phys. Rev. B 17, 337 (1978)

    Article  ADS  Google Scholar 

  47. C. Lacroix, J. Phys. C 11, 2389 (1981)

    Google Scholar 

  48. C. Lacroix, J. Appl. Phys. 53, 2131 (1982)

    Article  ADS  Google Scholar 

  49. H.G. Luo, J.J. Ying, S.J. Wang, Phys. Rev. B 59, 9710 (1999)

    Article  ADS  Google Scholar 

  50. R. Bulla, M. Potthoff, Eur. Phys. J. B 13, 257 (2000)

    Article  ADS  Google Scholar 

  51. M. Potthoff, Phys. Rev. B 64, 165114 (2001)

    Article  ADS  Google Scholar 

  52. R. Bulla, Phys. Rev. Lett. 83, 136 (1999)

    Article  ADS  Google Scholar 

  53. N.H. Tong, S.Q. Shen, F.C. Pu, Phys. Rev. B 64, 235109 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning-Hua Tong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Tong, NH. A standard basis operator equation of motion impurity solver for dynamical mean field theory. Eur. Phys. J. B 88, 319 (2015). https://doi.org/10.1140/epjb/e2015-60082-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2015-60082-9

Keywords

Navigation