Skip to main content
Log in

Features of the Fission Fragments Formed in the Heavy Ion induced \(^{32}\hbox {S}\)+\(^{197}\hbox {Au}\) reaction near the interaction barrier

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The features of fission fragments formed in the near barrier reaction \(^{32}\hbox {S}\) + \(^{197}\hbox {Au}\) (\(E^\mathrm{lab}_\mathrm{beam}=166\,\hbox {MeV}\)) are investigated. The measurement was performed at the ALTO facility of IPN Orsay, France, with the aim of clarifying the quantitative contribution of the quasi-fission process to the total fission events. The mass and total kinetic energy of the fission fragments were compared to the expectations of the liquid drop model, revealing an asymmetric fission component which may be traced back to a quasi-fission process mixed with the fusion–fission events. The \(\gamma \)-rays and neutrons measured in coincidence with the fission fragments were used to yield additional information for the discrimination of the two aforementioned mechanisms. All observed trends are consistent and fairly well reproduced by the statistical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request granted all coauthors agree.]

References

  1. J.R. Nix, W.J. Swiatecki, Nucl. Phys. 71, 1 (1965)

    Google Scholar 

  2. C. Gregoire, C. Ngo, B. Remaud, Nucl. Phys. A 383, 39220 (1982)

    Google Scholar 

  3. C. Lebrun et al., Nucl. Phys. A 321, 207–212 (1979)

    ADS  Google Scholar 

  4. C. Gregoire, F. Scheuter, Z. Phys. A 303, 337 (1981)

    ADS  Google Scholar 

  5. J. Tõke et al., Nucl. Phys. A 440, 327 (1985)

    ADS  Google Scholar 

  6. B.B. Back et al., Phys. Rev. Lett. 46, 1068 (1981)

    ADS  Google Scholar 

  7. W.Q. Shen et al., Phys. Rev. C 36, 115 (1987)

    ADS  Google Scholar 

  8. B.B. Back, Phys. Rev. C 31, 2104 (1985)

    ADS  Google Scholar 

  9. D. Jacquet, M. Morjean, Prog. Rep in Part. Nulc. Phys 63, 155 (2009)

    ADS  Google Scholar 

  10. M.G. Itkis, E. Vardaci, I.M. Itkis, G.N. Knyazheva, E.M. Kozulin, Nucl. Phys. A 944, 204 (2015)

    ADS  Google Scholar 

  11. E. Vardaci, M.G. Itkis, I.M. Itkis, G. Knyazheva, E.M. Kozulin, J. Phys. G Nucl. Part. Phys. 46, 103002 (2019)

    ADS  Google Scholar 

  12. H. Lu et al., Phys. Rev. C 94, 034616 (2016)

    ADS  Google Scholar 

  13. G.N. Knyazheva et al., Phys. Rev. C 75, 064602 (2007)

    ADS  Google Scholar 

  14. AYu. Chizhov et al., Phys. Rev. C 67, 011603(R) (2003)

    ADS  Google Scholar 

  15. R.N. Sagaidak et al., Phys. Rev. C 68, 014603 (2003)

    ADS  Google Scholar 

  16. G.N. Knyazheva et al., Phys. Part Nucl. Lett. 5, 21 (2008)

    Google Scholar 

  17. I.M. Itkis et al., Phys. Rev. C 83, 064613 (2011)

    ADS  Google Scholar 

  18. V. Zagrebaev, W. Greiner, J. Phys. G 34, 1 (2007)

    ADS  Google Scholar 

  19. R. du Rietz et al., Phys. Rev. C 88, 054618 (2013)

    ADS  Google Scholar 

  20. U. Brosa, S. Grossmann, A. Müller, Phys. Reports 197, 167 (1990)

    ADS  Google Scholar 

  21. B. B. Back, Presented at the International School on Heavy Ion Physics held at Alushta, USSR, April 14-21 (1983)

  22. R.K. Choudhury et al., Phys. Rev. C 60, 054609 (1999)

    ADS  Google Scholar 

  23. L.G. Moretto, R.P. Schmitt, Phys. Rev. C 21, 204 (1980)

    ADS  Google Scholar 

  24. E.M. Kozulin et al., Instrum. Exp. Tech. 51, 44 (2008) (ISSN 0020–4412)

  25. E.V. Benton, R.P. Henke, Nucl. Instrum. Methods 67, 87–92 (1969)

    ADS  Google Scholar 

  26. J. Lindhard et al., H.E. Mat., Fys. Medd. Dan. Vid. Selsk 33, 14 (1963)

    Google Scholar 

  27. S.A. Ziegler, et al., http://www.srim.org/ (2013)

  28. http://gammapool.lnl.infn.it/index/home/Gammapool_10_years_celebration.htm

  29. A. Maj et al., Acta Phys. Pol B 40, 565–75 (2009)

    ADS  Google Scholar 

  30. C. Boiano, F. Camera, S. Brambilla, et al. NSS, IEEE, N10-115 (2010)

  31. M. Romoli et al., IEEE Trans. Nucl. Sci. 52, 1860 (2005)

    ADS  Google Scholar 

  32. C. Signorini et al., Eur. Phys J A 44, 63 (2010)

    ADS  Google Scholar 

  33. D. Pierroutsakou et al., Eur. Phys. J. Spec. Top. 150, 47 (2007)

    Google Scholar 

  34. S.Y. Van Der Werf, Nucl. Instrum. Methods 153, 221–228 (1978)

    ADS  Google Scholar 

  35. M.G. Itkis, A.Ya. Rusanov, Phys. Part. Nucl. 29, 389 (1998)

    Google Scholar 

  36. A.C. Wahl, R.L. Ferguson, D.R. Nethaway, D.E. Troutner, K. Wolfsberg, Phys. Rev. 126, 1112–1127 (1962)

    ADS  Google Scholar 

  37. W. Reisdorf et al., Phys. Rev. C 14, 2189 (1976)

    ADS  Google Scholar 

  38. P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, Atom. Data Nucl. Data Tables 59, 185–381 (1995)

    ADS  Google Scholar 

  39. K.-H. Schmidt, B. Jurado, Phys. Rev. C 83, 061601(R) (2011)

    ADS  Google Scholar 

  40. R.J. Charity, Phys. Rev. C 82, 014610 (2010)

    ADS  Google Scholar 

  41. D. Mancusi, R.J. Charity, J. Cugnon, Phys. Rev. C 82, 044610 (2010). online at: https://bitbucket.org/arekfu/gemini

  42. M. Ciemała et al., Acta Phys. Pol. B 44, 611 (2013)

    ADS  Google Scholar 

  43. D.J. Hinde, D. Hilscher, H. Rossner, B. Gebauer, M. Lehmann, M. Wilpert, Phys. Rev. C 45, 1229 (1992)

    ADS  Google Scholar 

  44. V.E. Viola Jr., Nucl. Data Tables Al 391 (1966)

  45. P. Glässel, R. Schmid-Fabian, D. Schwalm, Nucl. Phys. A 502, 315–324 (1989)

    ADS  Google Scholar 

  46. R.P. Schmitt, G. Mouchaty, D.R. Haenni, Nucl. Phys. A 427, 614 (1984)

    ADS  Google Scholar 

  47. B.B. Back et al., Phys. Rev. C 41, 1495 (1990)

    ADS  Google Scholar 

  48. I. Ahmad, W.R. Phillips, Rep. Prog. Phys. 58, 1415 (1995)

    ADS  Google Scholar 

  49. A. Di Nitto et al., Eur. Phys. J. A 47, 1 (2011)

    Google Scholar 

  50. E. Vardaci et al., Phys. Rev. C 92, 034610 (2015)

    ADS  Google Scholar 

  51. E.M. Kozulin et al., Phys. Rev. C 96, 064621 (2017)

    ADS  Google Scholar 

  52. A.V. Karpov, V.V. Saiko, Phys. Rev. C 96, 024618 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank the IPNO accelerator group for the quality beam and smooth running throughout the experiment. The use of detectors from the Gammapool European Spectroscopy and France UK (IN2P3/STFC) LoanPool Resources through the ORGAM (OrsayGammaArray) project is gratefully acknowledged. We also want to acknowledge the PARIS ongoing collaboration. This work was supported by FLNR, JINR, the IN2P3-JINR Agreement No 14-90 and 00-50, the ENSAR2 project “N-SI-88”, by the financial contribution of Romania to the Joint Institute of Nuclear Research (JINR-RO) to the 03-5-1094-2010/2016 and 03-5-1130-2017/2021 themes, by the Polish National Science Centre under Contract No. 2013/08/M/ST2/00257 and the French LEA COPIGAL project.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to I. M. Harca.

Additional information

Communicated by A. Obertelli

The PARIS collaboration.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozulin, E.M., Harca, I.M., Vardaci, E. et al. Features of the Fission Fragments Formed in the Heavy Ion induced \(^{32}\hbox {S}\)+\(^{197}\hbox {Au}\) reaction near the interaction barrier. Eur. Phys. J. A 56, 6 (2020). https://doi.org/10.1140/epja/s10050-019-00019-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-019-00019-5

Navigation