Advertisement

Euclidean correlators at imaginary spatial momentum and their relation to the thermal photon emission rate

  • Harvey B. MeyerEmail author
Open Access
Regular Article - Theoretical Physics

Abstract.

The photon emission rate of a thermally equilibrated system is determined by the imaginary part of the in-medium retarded correlator of the electromagnetic current transverse to the spatial momentum of the photon. In a Lorentz-covariant theory, this correlator can be parametrized by a scalar function \(\mathcal{G}_R(u\cdot \mathcal{K},\mathcal{K}^{2})\), where u is the fluid four-velocity and \(\mathcal{K}\) corresponds to the momentum of the photon. We propose to compute the analytic continuation of \( \mathcal{G}_R(u\cdot \mathcal{K},\mathcal{K}^{2})\) at fixed, vanishing virtuality \( \mathcal{K}^{2}\), to imaginary values of the first argument, \( u\cdot \mathcal{K} = i\omega_{n}\). At these kinematics, the retarded correlator is equal to the Euclidean correlator \( G_{E}(\omega_{n},k=i\omega_{n})\), whose first argument is the Matsubara frequency and the second is the spatial momentum. The Euclidean correlator, which is directly accessible in lattice QCD simulations, must be given an imaginary spatial momentum in order to realize the photon on-shell condition. Via a once-subtracted dispersion relation that we derive in a standard way at fixed \( \mathcal{K}^{2}=0\), the Euclidean correlator with imaginary spatial momentum is related to the photon emission rate. The relation allows for a more direct probing of the real-photon emission rate of the quark-gluon plasma in lattice QCD than the dispersion relations which have been used so far, the latter being at fixed spatial photon momentum k and thus involving all possible virtualities of the photon.

References

  1. 1.
    P. Braun-Munzinger, V. Koch, T. Schaefer, J. Stachel, Phys. Rep. 621, 76 (2016) arXiv:1510.0044ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    S. Campbell, Nucl. Phys. A 967, 177 (2017) arXiv:1704.0630ADSCrossRefGoogle Scholar
  3. 3.
    T. Asaka, M. Laine, M. Shaposhnikov, JHEP 06, 053 (2006) arXiv:hep-ph/0605209ADSCrossRefGoogle Scholar
  4. 4.
    R. Adhikari, A white paper on kev sterile neutrino dark matter, arXiv:1602.0481Google Scholar
  5. 5.
    P.B. Arnold, G.D. Moore, L.G. Yaffe, JHEP 12, 009 (2001) arXiv:hep-ph/0111107ADSCrossRefGoogle Scholar
  6. 6.
    J. Ghiglieri, J. Hong, A. Kurkela, E. Lu, G.D. Moore et al., JHEP 05, 010 (2013) arXiv:1302.5970ADSCrossRefGoogle Scholar
  7. 7.
    D.T. Son, A.O. Starinets, JHEP 09, 042 (2002) arXiv:hep-th/0205051ADSCrossRefGoogle Scholar
  8. 8.
    J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618Google Scholar
  9. 9.
    P.M. Hohler, R. Rapp, Phys. Lett. B 731, 103 (2014) arXiv:1311.2921ADSCrossRefGoogle Scholar
  10. 10.
    R. Rapp, H. van Hees, Eur. Phys. J. A 52, 257 (2016) arXiv:1608.0527ADSCrossRefGoogle Scholar
  11. 11.
    Y. Hidaka, S. Lin, R.D. Pisarski, D. Satow, JHEP 10, 005 (2015) arXiv:1504.0177ADSCrossRefGoogle Scholar
  12. 12.
    C. Gale, Y. Hidaka, S. Jeon, S. Lin, J.-F. Paquet, R.D. Pisarski, D. Satow, V.V. Skokov, G. Vujanovic, Phys. Rev. Lett. 114, 072301 (2015) arXiv:1409.4778ADSCrossRefGoogle Scholar
  13. 13.
    J.-F. Paquet, C. Shen, G.S. Denicol, M. Luzum, B. Schenke, S. Jeon, C. Gale, Phys. Rev. C 93, 044906 (2016) arXiv:1509.0673ADSCrossRefGoogle Scholar
  14. 14.
    R.-A. Tripolt, C. Jung, N. Tanji, L. von Smekal, J. Wambach, In-medium spectral functions and dilepton rates with the Functional Renormalization Group, in 27th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions (Quark Matter 2018) Venice, Italy, May 14–19, 2018 (Elsevier, 2018) arXiv:1807.0495Google Scholar
  15. 15.
    J. Ghiglieri, O. Kaczmarek, M. Laine, F. Meyer, Phys. Rev. D 94, 016005 (2016) arXiv:1604.0754ADSCrossRefGoogle Scholar
  16. 16.
    B.B. Brandt, A. Francis, B. Jäger, H.B. Meyer, Phys. Rev. D 93, 054510 (2016) arXiv:1512.0724ADSCrossRefGoogle Scholar
  17. 17.
    G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands, J.-I. Skullerud, JHEP 02, 186 (2015) arXiv:1412.6411ADSCrossRefGoogle Scholar
  18. 18.
    B. Brandt, A. Francis, M. Laine, H. Meyer, JHEP 05, 117 (2014) arXiv:1404.2404ADSCrossRefGoogle Scholar
  19. 19.
    L.D. McLerran, T. Toimela, Phys. Rev. D 31, 545 (1985)ADSCrossRefGoogle Scholar
  20. 20.
    S. Caron-Huot, Phys. Rev. D 79, 065039 (2009) arXiv:0811.1603ADSCrossRefGoogle Scholar
  21. 21.
    M. Panero, K. Rummukainen, A. Schaefer, Phys. Rev. Lett. 112, 162001 (2014) arXiv:1307.5850ADSCrossRefGoogle Scholar
  22. 22.
    X.-d. Ji, C.-w. Jung, Phys. Rev. Lett. 86, 208 (2001) arXiv:hep-lat/0101014ADSCrossRefGoogle Scholar
  23. 23.
    A.J. Chambers, R. Horsley, Y. Nakamura, H. Perlt, P.E.L. Rakow, G. Schierholz, A. Schiller, K. Somfleth, R.D. Young, J.M. Zanotti, Phys. Rev. Lett. 118, 242001 (2017) arXiv:1703.0115ADSCrossRefGoogle Scholar
  24. 24.
    J.J. Dudek, R.G. Edwards, Phys. Rev. Lett. 97, 172001 (2006) arXiv:hep-ph/0607140ADSCrossRefGoogle Scholar
  25. 25.
    X. Feng, S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko et al., Phys. Rev. Lett. 109, 182001 (2012) arXiv:1206.1375ADSCrossRefGoogle Scholar
  26. 26.
    A. Gérardin, H.B. Meyer, A. Nyffeler, Phys. Rev. D 94, 074507 (2016) arXiv:1607.0817ADSCrossRefGoogle Scholar
  27. 27.
    B.B. Brandt, A. Francis, T. Harris, H.B. Meyer, A. Steinberg, EPJ Web of Conferences 175, 07044 (2018) arXiv:1710.0705CrossRefGoogle Scholar
  28. 28.
    H.B. Meyer, Eur. Phys. J. A 47, 86 (2011) arXiv:1104.3708ADSCrossRefGoogle Scholar
  29. 29.
    S. Weinberg, The Quantum theory of fields. Vol. 1: Foundations (Cambridge University Press, 1995)Google Scholar
  30. 30.
    J. Hong, D. Teaney, Phys. Rev. C 82, 044908 (2010) arXiv:1003.0699ADSCrossRefGoogle Scholar
  31. 31.
    G. Cuniberti, E. De Micheli, G.A. Viano, Commun. Math. Phys. 216, 59 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    F. Ferrari, Nucl. Phys. B 909, 880 (2016) arXiv:1602.0735ADSCrossRefGoogle Scholar
  33. 33.
    P. Aurenche, F. Gelis, G. Moore, H. Zaraket, JHEP 12, 006 (2002) arXiv:hep-ph/0211036ADSCrossRefGoogle Scholar
  34. 34.
    M. Lüscher, S. Sint, R. Sommer, P. Weisz, U. Wolff, Nucl. Phys. B 491, 323 (1997) arXiv:hep-lat/9609035ADSCrossRefGoogle Scholar
  35. 35.
    J.I. Kapusta, C. Gale, Finite-Temperature Field Theory: Principles and Applications (Cambridge University Press, 2006) p. 428Google Scholar
  36. 36.
    P.K. Kovtun, A.O. Starinets, Phys. Rev. D 72, 086009 (2005) arXiv:hep-th/0506184ADSCrossRefGoogle Scholar
  37. 37.
    S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets, L.G. Yaffe, JHEP 12, 015 (2006) arXiv:hep-th/0607237ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://doi.org/creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz, Johannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations