Skip to main content
Log in

Universal character of the physicochemical behavior of polymer glasses under compressive deformation conditions

  • Physical Foundations of Strength and Plasticity
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The physicomechanical properties of polymer glasses are studied during compressive deformation. The results obtained are used to propose a procedure for a universal description of their deformation and relaxation behavior using physically grounded normalized parameters and stable numerical relationships between the basic mechanical properties of a material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. S. Arzhakov, G. M. Lukovkin, S. A. Arzhakov, and A. E. Sal’ko, “Universal Character of the Physico-Chemical Behavior of Polymer Glasses and Their Generalized Model,” Deformatsiya i Razrushenie Materialov, No. 7, 2–12 (2005).

  2. G. M. Lukovkin, M. S. Arzhakov, A. E. Sal’ko, and S. A. Arzhakov, “On the Nature of the Generalized Physicochemical Behavior of Polymer Glasses,” Deformatsiya i Razrushenie Materialov, No. 6, 18–24 (2006).

  3. E. A. Hoff, “Some Mechanical Properties of a Commercial Polymethylmethacrylate,” J. Appl. Chem. 2, 441–445 (1952).

    Article  CAS  Google Scholar 

  4. S. A. Arzhakov and V. A. Kabanov, “On the Problem of Stress Relaxation in Polymers Deformed under Forced Elasticity Conditions,” Vysokomol. Soedin., Ser. B 13(5), 318–319 (1971).

    CAS  Google Scholar 

  5. S. A. Arzhakov, “Structural-Mechanical Properties of Polymer Glasses,” Doctoral (Chem.) Dissertation, Moscow: NIFKhI im. Karpova, 1975.

    Google Scholar 

  6. M. S. Arzhakov and S. A. Arzhakov, “Physical and Mechanical Behavior of Polymer Glasses in Terms of Temperature-Induced Relaxation of Plastic Deformation,” Int. J. Polym. Mater. 40(1), 133–159 (1998).

    Article  CAS  Google Scholar 

  7. Structural and Mechanical Behavior of Polymer Glasses, Eds. by M. S. Arzhakov, S. A. Arzhakov, and G. E. Zaikov (Nova Sci. Publishers, New York, 1997).

    Google Scholar 

  8. A. L. Volynskii, T. E. Gorokhovskaya, A. S. Kechek’yan, and N. F. Bakeev, “Deformation of Polymer Glasses,” Vysokomol. Soedin., Ser. A 45(3), 449–456 (2003).

    Google Scholar 

  9. A. L. Volynskii, A. S. Kechek’yan, T. E. Gorokhovskaya, et al., “On the Mechanism of Deformation of Polymer Glasses,” Vysokomol. Soedin., Ser. A 44(4), 615–628 (2002).

    CAS  Google Scholar 

  10. A. L. Volynskii and N. F. Bakeev, “Structural Aspects of Inelastic Deformation of Polymer Glasses,” Vysokomol. Soedin., Ser. C 47(7), 1332–1367 (2005).

    CAS  Google Scholar 

  11. M. S. Arzhakov, G. M. Lukovkin, and S. A. Arzhakov, “Physical and Mechanical Behavior of Polymethyl Methacrylate during Confined Compression,” Dokl. Akad. Nauk 382(1), 62–65 (2002).

    Google Scholar 

  12. V. A. Bernshtein and V. M. Egorov, Differential Scanning Calorimetry in the Physical Chemistry of Polymers (Khimiya, Moscow, 1990) [in Russian].

    Google Scholar 

  13. E. F. Oleinik, O. B. Salamatina, S. N. Rudnev, and S. V. Shenogin, “New Approach to the Plastic Deformation of Polymer Glasses,” Vysokomol. Soedin., Ser. A 35(11), 1819–1849 (1993).

    CAS  Google Scholar 

  14. S. V. Shenogin, G. W. H. Hobne, O. B. Salamatina, et al., “Deformation of Polymer Glasses: Energy Accumulation at the Early Stages of Loading,” Vysokomol. Soedin., Ser. A 46(1), 30–42 (2004).

    CAS  Google Scholar 

  15. J. A. Forrest, K. Dalnoki-Veress, J. R. Stevens, and J. R. Dutcher, “Effect of Free Surfaces on the Glass Transition Temperature of Thin Polymer Films,” Phys. Rev. Lett. 77(10), 2002–2009 (1996).

    Article  CAS  Google Scholar 

  16. J. L. Keddie, R. A. L. Jones, and R. A. Cory, “Size-Dependent Depression of the Glass Transition Temperature in Polymer Films,” Europhys. Lett. 27(1), 59–64 (1994).

    Article  CAS  Google Scholar 

  17. K. Tanaka, T. Kajiyama, and A. Takahara, “Surface Molecular Motion in Thin Films of Poly(Styrene-Block-Methyl Methacrylate) Diblock Copolymer,” Acta Polymerica 46(6), 476–482 (1995).

    Article  CAS  Google Scholar 

  18. T. Kajiyama, K. Tanaka, and A. Takahara, “Depth Dependence of the Surface Glass Transition Temperature of a Poly(Sty-Rene-Block-Methyl Methacrylate) Diblock Copolymer Film on the Basis of Temperature-Dependent X-ray Photoelectron Spectroscopy,” Macromolecules 28(9), 3482–3493 (1995).

    Article  CAS  Google Scholar 

  19. G. F. Meyers, B. D. DeKoven, and J. T. Seitz, “Is the Molecular Surface of Polystyrene Really Glassy?,” Langmuir 8(9), 2330–2335 (1992).

    Article  CAS  Google Scholar 

  20. J. S. Rouse, P. L. Twaddle, and G. S. Ferguson, “Frustrated Reconstruction at the Surface of a Glassy Polymer,” Macromolecules 32(5), 1665–1671 (1999).

    Article  CAS  Google Scholar 

  21. T. Kajiyama, K. Tanaka, N. Satomi, and A. Takahara, “Surface Relaxation Process of Monodisperse Polystyrene Film Based on Lateral Force Microscopic Measurements,” Macromolecules 31(15), 5150–5151 (1998).

    Article  CAS  Google Scholar 

  22. G. Reiter, “Dewetting as a Probe of Polymer Mobility in Thin Films,” Macromolecules 27(11), 3046–3052 (1994).

    Article  CAS  Google Scholar 

  23. M. S. Arzhakov, “Generalized Description of the Mechanical and Relaxation Properties of Polymer Glass,” Doctoral (Chem.) Dissertation, Moscow: Moscow State University, 2004.

    Google Scholar 

  24. B. P. Shtarkman, I. M. Monich, S. A. Arzhakov, and N. Yu. Averbakh, “Isothermal Compressibility of Polymethyl Methacrylate in Various Physical States,” Vysokomol. Soedin., Ser. A 18(5), 1047–1053 (1976).

    CAS  Google Scholar 

  25. K. Fukao and Y. Miyamoto, “Glass Transition Temperature and Dynamics of α-Process in Thin Polymer Films,” Europhys. Lett. 46(5), 649–652 (1999).

    Article  CAS  Google Scholar 

  26. S. A. Arzhakov, N. F. Bakeev, and V. A. Kabanov, “Supramolecular Structure of Amorphous Polymers,” Vysokomol. Soedin., Ser. A 15(5), 1154–1168 (1973).

    CAS  Google Scholar 

  27. Y. A. Mikheyev and G. E. Zaikov, “On the Functions of Molecular Sponge in Heterophase Chain Reactions of Block Polymers (on the Example of Polystyrene Arylation by Dibenzoyl Peroxide),” Int. J. Polym. Mater. 34(1), 29–37 (1996).

    Article  CAS  Google Scholar 

  28. Yu. I. Matveev and A. A. Asadskii, “On the Formation of Supramolecular Structures in Amorphous Polymers,” Vysokomol. Soedin., Ser. A 28(7), 1365–1376 (1986).

    CAS  Google Scholar 

  29. G. V. Kozlov and D. S. Sanditov, Anharmonic Effects and Physicomechanical Properties of Polymers (Nauka, Novosibirsk, 1994) [in Russian].

    Google Scholar 

  30. M. S. Arzhakov and S. A. Arzhakov, “Monolithization of Glassy Thermoplastics,” Russ. Polymer News. 2(1), 38–39 (1997).

    CAS  Google Scholar 

  31. M. S. Arzhakov and S. A. Arzhakov, “Physical and Mechanical Behavior of Polymer Glasses. Polymeric Powders,” Int. J. Polym. Mater. 40(1), 1–16 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Arzhakov.

Additional information

Original Russian Text © M.S. Arzhakov, A.E. Zhirnov, G.M. Lukovkin, S.A. Arzhakov, 2009, published in Deformatsiya i Razrushenie Materialov, 2009, No. 12, pp. 12–18.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arzhakov, M.S., Zhirnov, A.E., Lukovkin, G.M. et al. Universal character of the physicochemical behavior of polymer glasses under compressive deformation conditions. Russ. Metall. 2010, 851–856 (2010). https://doi.org/10.1134/S0036029510100010

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029510100010

Keywords

Navigation