Skip to main content
Log in

Thermodynamics and Kinetics of the Reaction between Pyridoxal-5-Phosphate and Hydrazides of 2-Methylfuran-3-Carboxylic and Thiophene-3-Carboxylic Acids in an Aqueous Solution

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The stability constants of pyridoxal-5-phosphate hydrazones formed with 2-methylfuran-3-carbohydrazide and thiophene-3-carbohydrazide in an aqueous solution at pH 1.9, 6.6, 7.0, and 7.4 are determined via spectrophotometry. The kinetics of the processes of formation and hydrolysis of the Schiff bases are studied, and the constant of the direct and reverse reactions are calculated from the electronic absorption spectra. The stability constants of the Schiff bases are calculated from their ratio. The thermodynamic parameters of the reaction of formation (log K, ΔH, and TΔS) of both hydrazones at pH 6.6 are determined via calorimetry. The reasons for the differences between the equilibrium constants calculated from the data of spectrophotometric and kinetic experiments are discussed, and the reliability of the obtained results is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. X. Su and I. Aprahamian, Chem. Soc. Rev. 43, 1963 (2014). https://doi.org/10.1039/C3CS60385G

    Article  CAS  PubMed  Google Scholar 

  2. L. N. Suvarapu, Y. K. Seo, S.-O. Baek, and V. R. Ammireddy, E-J. Chem. 9, 1288 (2012). https://doi.org/10.1155/2012/534617

  3. M. M. E. Shakdofa, M. H. Shtaiwi, N. Morsy, and T. M. A. Abdel-rassel, Main Group Chem. 13, 187 (2014). https://doi.org/10.3233/MGC-140133

    Article  CAS  Google Scholar 

  4. M. Hermes-Lima, M. S. Goncalves, and R. G. Andrade, Jr., Mol. Cell. Biochem. 228, 73 (2001). https://doi.org/10.1023/A:1013348005312

    Article  CAS  PubMed  Google Scholar 

  5. G. A. Gamov, A. N. Kiselev, V. V. Aleksandriiskii, and V. A. Sharnin, J. Mol. Liq. 242, 1148 (2017). https://doi.org/10.1016/j.molliq.2017.07.106

    Article  CAS  Google Scholar 

  6. http://way2drug.com/PassOnline/predict.php. Accessed March 20, 2018.

  7. O. A. Fliz and V. V. Poroikov, Russ. Chem. Rev. 81, 158 (2012). https://doi.org/10.1070/RC2012v081n02ABEH004222

    Article  CAS  Google Scholar 

  8. V. V. Poroikov, D. A. Filimonov, Yu. V. Borodina, et al., J. Chem. Inf. Comput. Sci. 40, 1349 (2000). https://doi.org/10.1021/ci000383k

    Article  CAS  PubMed  Google Scholar 

  9. A. Cannavo, K. Komici, L. Bencivenga, et al., Expert Opin. Ther. Targets 22, 75 (2018). https://doi.org/10.1080/14728222.2018.1406925

    Article  CAS  PubMed  Google Scholar 

  10. D. M. Thal, R. Y. Yeow, C. Schoenau, et al., Mol. Pharmacol. 80, 294 (2011). https://doi.org/10.1124/mol.111.071522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. H. V. Waldschmidt, K. T. Homan, O. Cruz-Rodríguez, et al., J. Med. Chem. 59, 3793 (2016). https://doi.org/10.1021/acs.jmedchem.5b02000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. J. L. Buss and P. Ponka, Biochim. Biophys. Acta– Gen. Sub. 1619, 177 (2003). https://doi.org/10.1016/S0304-4165(02)00478-6

    Article  CAS  Google Scholar 

  13. M. F. Mouat and K. L. Manchester, Compar. Haematol. Int. 8, 58 (1998). https://doi.org/10.1007/BF02628107

    Article  CAS  Google Scholar 

  14. I. Wadso and R. N. Goldberg, Pure Appl. Chem. 73, 1625 (2001). https://doi.org/10.1351/pac200173101625

    Article  CAS  Google Scholar 

  15. G. A. Gamov, M. N. Zavalishin, T. R. Usacheva, and V. A. Sharnin, Russ. J. Phys. Chem. A 91, 843 (2017). https://doi.org/10.1134/S0036024417050107

    Article  CAS  Google Scholar 

  16. www.tainstruments.com/support/software-downloads-support/downloads/. Accessed March 20, 2018.

  17. Practical Guide on Physical Chemistry. Kinetics and Catalysis. Electrochemistry, Ed. by V. V. Lunin and E. P. Ageev (Akademiya, Moscow, 2012), p. 70 [in Russian].

    Google Scholar 

  18. www.chem.msu.su/rus/teaching/KINET2012/. Accessed March 20, 2018.

  19. G. A. Gamov, V. V. Aleksandriiskii, M. N. Zavalishin, A. Yu. Khokhlova, and V. A. Sharnin, Russ. J. Gen. Chem. 87, 1161 (2017). https://doi.org/10.1134/S1070363217060093

    Article  CAS  Google Scholar 

  20. V. I. Asaturyan, Theory of Planning of Experiment (Radio Svyaz’, Moscow, 1983), p. 91 [in Russian].

    Google Scholar 

  21. Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, et al., Cancer Cell Int. 13, 89 (2013). https://doi.org/10.1186/1475-2867-13-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. V. Estrella, T. Chen, M. Lloyd, et al., Cancer Res. 73, 1524 (2013). https://doi.org/10.1158/0008-5472.CAN-12-2796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. C. Lazzeri, S. Valente, M. Chiostri, et al., Int. Emerg. Med. 5, 61 (2010). https://doi.org/10.1007/s11739-009-0338-0

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed at the Institute of Thermodynamics and Kinetics of Chemical Processes, Ivanovo State University of Chemistry and Technology. It was supported by the Russian Foundation for Basic Research, project 16-33-60017; by the RF Presidential Council on Grants, project 14.Z56.18.877-MK, and by RF Ministry of Science and Higher Education, project 4.7305.2017/8.9. Our calorimetric experiments were performed on equipment at the shared resource center of the Ivanovo State University of Chemistry and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gamov.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gamov, G.A., Zavalishin, M.N., Kabirov, D.N. et al. Thermodynamics and Kinetics of the Reaction between Pyridoxal-5-Phosphate and Hydrazides of 2-Methylfuran-3-Carboxylic and Thiophene-3-Carboxylic Acids in an Aqueous Solution. Russ. J. Phys. Chem. 93, 192–197 (2019). https://doi.org/10.1134/S0036024419020110

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419020110

Keywords:

Navigation