Skip to main content
Log in

Molecular structure, vibrational spectral investigation and the confirmation analysis of 4-Methylesculetin molecule

  • Spectroscopy of Atoms and Molecules
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

In this work, FT-IR, FT-Raman, and FT-NMR spectra of 4-Methylesculetin molecule are presented for the first time. FT-IR, FT-Raman, and FT-NMR spectra of 4MEC have been recorded and analyzed. The FT-IR and FT-Raman spectra of this molecule are recorded at 4000-400 cm−1 and 50–3500 cm−1, respectively. The infrared vibrational frequencies, absolute intensities, potential energy profile, HOMO-LUMO plot and NBO analysis of the molecule have been also predicted using Becke’s three-parameter hybrid B3LYP method in the density functional theory DFT method. Calculated and experimental data are in good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. P. Masche, K. M. Rentsch, A. Felten, P. J. Meier, and K. E. Fittinger, Eur. J. Clin. Pharmacol. 54, 865 (1999).

    Article  Google Scholar 

  2. I. Kostova, N. Trendafilova, and G. Momekov, J. Inorg. Biochem. 99, 477 (2005).

    Article  Google Scholar 

  3. G. Luzzatto, F. Fabris, R. D. B. Zanon, and A. Giralami, Arzneim. Forsch. 36, 972 (1986).

    Google Scholar 

  4. I. Kostova, I. Manolov, I. Nicolova, and N. Danchev, Farmaco 56, 707 (2001).

    Article  Google Scholar 

  5. I. Georgieva, I. Kostova, N. Trendafilova, V. K. Rastogi, G. Bauer, and W. Kiefer, J. Raman Spectrosc. 37, 742 (2006).

    Article  ADS  Google Scholar 

  6. I. Kostova, N. Trendafilova, and T. Mihailov, Chem. Phys. 314, 73. (2005).

    Article  ADS  Google Scholar 

  7. N. Trendafilova, I. Kostova, V. K. Rastogi, I. Georgieva, G. Bauer, and W. Kiefer, J. Raman Spectrosc. 37, 808 (2006).

    Article  ADS  Google Scholar 

  8. I. Kostova, N. Trendafilova, and I. Georgieva, Spectrosc. Lett. 40, 65 (2007).

    Article  ADS  Google Scholar 

  9. T. Mihaylov, N. Trendafilova, I. Kostova, I. Georgieva, and G. Bauer, Chem. Phys. 327, 209 (2006).

    Article  ADS  Google Scholar 

  10. I. Kostova, I. Manolov, I. Nicolova, S. Konstantinov, and M. Karaivanova, Eur. J. Med. Chem. 36, 339 (2001).

    Article  Google Scholar 

  11. I. Kostova, I. Manolov, S. Konstantinov, and M. Karaivanova, Eur. J. Med. Chem. 34, 63 (1999).

    Article  Google Scholar 

  12. I. Manolov, I. Kostova, S. Konstantinov, and M. Karaivanova, Eur. J. Med. Chem. 34, 853 (1999).

    Article  Google Scholar 

  13. Y. Masamoto, H. Ando, Y. Murata, Y. Shimoishi, M. Tada, and K. Takahata, Biosci. Biotechnol. Biochem. 67, 631 (2003).

    Article  Google Scholar 

  14. D. Egan, R. O’Kennedy, E. Moran, D. Cox, E. Prosser, and R. D. Thornes, Derag. Metab. Rev. 22, 503 (1990).

    Article  Google Scholar 

  15. Y. Okata, N. Miyauchi, K. Suzuki, T. Kobayasashi, C. Tsutsui, K. Mayuzumi, S. Nishibe, and T. Okuyama, Chem. Pharm. Bull. 43, 1385 (1995).

    Article  Google Scholar 

  16. M. Paya, B. Halliwell, and J. R. S. Hoult, Biochem. Pharmacol. 44, 205 (1992).

    Article  Google Scholar 

  17. W. L. Lin, C. J. Wang, Y. Y. Tsai, C.L. Liu, J. M. Hwang, and T.H. Tseng, Arch. Toxicol. 74, 467 (2000).

    Article  Google Scholar 

  18. M. Noguchi, M. Arashi, M. Minami, I. Miyazaki, M. Tanaka, and T. Sasaki, Fatty Acids 53, 325 (1995).

    Article  Google Scholar 

  19. A. Palumbo, A. Napolitano, P. Barone, and M. Dischia, Chem. Res. Toxicol. 12, 1213 (1999).

    Article  Google Scholar 

  20. M. L. Bretikbe, C. Servy, M. Lenfant, and C. Ducrocq, Tetrahedron Lett. 35, 7231 (1994).

    Article  Google Scholar 

  21. J. P. Abraham, I. H. Joe, V. George, O. F. Nielsen, and V. S. Jayakumar, Spectrochim. Acta A 59, 193 (2003).

    Article  ADS  Google Scholar 

  22. D. Sajan, I. H. Joe, J. Zaleski, and V. S. Jayakumar, Laser Phys. Lett. 2, 343 (2005).

    Article  ADS  Google Scholar 

  23. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford, New York, 1989).

    Google Scholar 

  24. R. O. Jones and O. Gunnarson, Rev. Mol. Phys. 61, 689 (1989)

    Article  ADS  Google Scholar 

  25. T. Ziegler, Chem. Rev. 91, 651 (1991).

    Article  Google Scholar 

  26. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  27. C. James, G. R. Pettit, O. F. Nielsen, V. S. Jayakumar, and I. H. Joe, Spectrochim. Acta A 70, 1208 (2008).

    Article  ADS  Google Scholar 

  28. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  29. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  30. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford, 2004).

    Google Scholar 

  31. H. B. Schlegel, J. Comput. Chem. 3, 214 (1982).

    Article  Google Scholar 

  32. Spartan 10, Wavefunction Inc., Irvine, CA 92612, USA (2010).

  33. G. Rauhut and P. Pulay, J. Phys. Chem. 99, 3093 (1995).

    Article  Google Scholar 

  34. D. Michalska, Raint Program (Wroclaw Univ. Technol., 2003).

    Google Scholar 

  35. D. Michalska and R. Wysokinski, Chem. Phys. Lett. 403, 211 (2005).

    Article  ADS  Google Scholar 

  36. R. Ditchfield, Molecular Orbital Theory of Magnetic Shielding and Magnetic Susceptibility 56, 5688 (1972).

    Google Scholar 

  37. K. Wolinski, J. F. Hinton, and P. Pulay, J. Am. Chem. Soc. 112(23), 8251 (1990).

    Article  Google Scholar 

  38. N. Azizi, A. A. Rostami, and A. Godarzian, J. Phys. Soc. Jpn. 74, 1609 (2005).

    Article  ADS  Google Scholar 

  39. M. Rohlfing, C. Leland, C. Allen, and R. Ditchfield, Chem. Phys. 879, 15 (1984).

    Google Scholar 

  40. S. P. Yang, L. J. Han, D. Q. Wang, and H.T. Xia, Acta Cryst. E 63, 4785 (2007).

    Article  Google Scholar 

  41. A. E. Reed, L.A. Curtiss, and F. Weinhold, Chem. Rev. 88, 899 (1988).

    Article  Google Scholar 

  42. J. P. Foster and F. Weinhold, J. Am. Chem. Soc. 102, 7211 (1980).

    Article  Google Scholar 

  43. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1, TCI, University of Wisconsin, Madison, 1998.

    Google Scholar 

  44. C. James, A. Amal Raj, O. F. Nielson, V. S. Jayakumar, and I. Hubert Joe, Spectrochim. Acta A 70, 1208 (2008).

    Article  ADS  Google Scholar 

  45. R. Kurtaran, S. Odabas, O. Glu, Azizoglu, H. Kara, and O. Atakol, Polyhedron 26, 5069 (2007).

    Article  Google Scholar 

  46. D. A. Dixon and B. E. Smart, Chem. Eng. Commun. 98, 173 (1990).

    Article  Google Scholar 

  47. K. Fukui, T. Yonezawa, and H. Shingu, J. Phys. Chem. 20, 722 (1952).

    Article  Google Scholar 

  48. C. H. Choi and M. Kertesz, J. Phys. Chem. A 101, 3823 (1997).

    Article  Google Scholar 

  49. D. Sajan, R. Reshmy, K. Kurien Thomas, Y. Erdogdu, and I. Hubert Joe, Spectrochim. Acta A 99, 234 (2012).

    Article  ADS  Google Scholar 

  50. C. Ravikumar, I. H. Joe, and V. S. Jayakumar, Chem. Phys. Lett. 460, 552 (2008).

    Article  ADS  Google Scholar 

  51. Y. Erdogdu, O. ünsalan, and M. T. Güllüoǧlu, J. Raman Spectrosc. 41(7), 820 (2010).

    Google Scholar 

  52. D. Sajan, Y. Erdogdu, R. Reshmy, Ö. Dereli, K. K. Thomas, and I. Hubert Joe, Spectrochim. Acta A 82, 118 (2011).

    Article  ADS  Google Scholar 

  53. O. ünsalan, Y. Erdogdu, and M. T. Güllüoǧlu, J. Raman Spectrosc. 40(5), 562 (2009).

    Article  ADS  Google Scholar 

  54. M. T. Güllüoǧlu, Y. Erdogdu, J. Karpagam, N. Sundaraganesan, and Ş. Yurdakul, J. Mol. Struct. 99, 14 (2011).

    Article  Google Scholar 

  55. Y. Erdogdu, Spectrochim. Acta A 106, 25 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Erdogdu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erdogdu, Y., Guzel, M., Güllüoǧlu, M.T. et al. Molecular structure, vibrational spectral investigation and the confirmation analysis of 4-Methylesculetin molecule. Opt. Spectrosc. 116, 348–359 (2014). https://doi.org/10.1134/S0030400X14030059

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X14030059

Keywords

Navigation