Skip to main content
Log in

Molecular Structure, Vibrational Analysis, Hyperpolarizability and NBO Analysis of 3-Methyl-Picolinic Acid Using SQM Calculations

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, FT-IR and FT-Raman spectra of 3-methyl picolinic acid (MPA) are recorded in the ranges 4000–450 cm–1 and 4000–50 cm–1, respectively. The optimized geometry is obtained by scaled quantum mechanical calculations using density functional theory employing the B3LYP functional with the 6–311++G(d,p) basis set. Vibrational assignments are suggested for all the fundamental vibrations unambiguously, using the potential energy distribution obtained in the computations. The rms error between the observed and calculated frequencies is found to be 8.48 cm–1. The dipole moment, polarizability, and hyperpolarizability values are computed to study the NLO behavior of the molecule. The NBO analysis is made to study the stability of the molecule arising from hyperconjugative interactions and charge delocalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Eubank, R. D. Walsh, P. Poddar, H. Srikanth, R. W. Larsen, and M. Eddaoudi. Cryst. Growth Des., 2006, 6, 1453–1457.

    Article  CAS  Google Scholar 

  2. M. L. Tong, J. Wang, and S. Hu. J. Soli. State Chem., 2005, 178, 1518–1525.

    Article  CAS  Google Scholar 

  3. J. Laxman Naik, B. Venkatram Reddy, and N. Prabavathi. J. Mol. Struct., 2015, 1100, 43–58.

    Article  CAS  Google Scholar 

  4. J. Laxman Naik, J. Prashanth, and B. Venkatram Reddy. In: ICSEMF proceedings. 2015, 336–339.

    Google Scholar 

  5. M. A. Yurovskaya, O. D. Mitkin, and F. V. Zaitsera. Chem. Heterocycl. Compd., 1998, 34, 871–879.

    Article  CAS  Google Scholar 

  6. G. W. Evan and P. E. Johnson. Peiatr. Res., 1980, 14, 876–880.

    Article  Google Scholar 

  7. J. A. Fernandez–Poi, P. D. Hamilton, and D. J. Klos. Anticancer Res., 2001, 21, 931–957.

    Google Scholar 

  8. A. I. Olantunbosun and S. Banjo. Middle East J. Sci. Res., 2013, 18(5), 597–608.

    Google Scholar 

  9. A. D. Becke, J. Chem. Phys., 1993, 98, 5648–5652.

    Article  CAS  Google Scholar 

  10. C. Lee, W. Yang, and R. G. Parr. Phys. Rev. B, 1988, 37, 785–789.

    Article  CAS  Google Scholar 

  11. M. J. Frisch, G. W. Trucks, et al. 2009 Gaussian. Wallingford, CT: Gaussian Inc., 2009.

    Google Scholar 

  12. A. Berces and T. Ziegler. J. Chem. Phys. 1993, 98, 4793–4804.

    Article  CAS  Google Scholar 

  13. P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggs, and A. Vargha. J. Am. Chem. Soc., 1983, 105, 7037–7047.

    Article  CAS  Google Scholar 

  14. G. Fogarasi and P. Pulay. Chapt. 3 in: Vibrational Spectra and Structure: A Series of Advances, Vol. 14 / Ed. J. R. Durig. Amsterdam: Elsevier, 1985.

    Google Scholar 

  15. G. Fogarasi, X. Zhou, P. W. Tayler, and P. Pulay. Am. Chem. Soc., 1992, 114, 8191–8201.

    Article  CAS  Google Scholar 

  16. T. Sundius. J. Mol. Struct., 1990, 218, 321–326.

    Article  CAS  Google Scholar 

  17. (a) T. Sundius. Vib. Spectrosc. 2002, 29, 89–95.

    Article  CAS  Google Scholar 

  18. Molvib (V 7.0): Calculation of Harmonic Force Fields and Vib. Modes of Molecules, QCPE program. 2002, (807).

  19. E. B. Wilson. Phys. Rev., 1934, 45, 706–714.

    Article  CAS  Google Scholar 

  20. A. Datta. J. Phys. Chem. C, 2009, 113, 3339–3344.

    Article  CAS  Google Scholar 

  21. Y. X. Sun, Q. L. Hao, W. X. Wei, Z. X. Yu, L. D. Lu, X. Wang, and Y. S. Wang. J. Mol. Struct: THEOCHEM, 2009, 904, 74–82.

    Article  CAS  Google Scholar 

  22. V. M. Geskin, C. Lambert, and J. L. Bredas. J. Am. Chem. Soc., 2004, 125, 15651–15658.

    Article  CAS  Google Scholar 

  23. M. Nakano, H. Fujita, M. Takahata, and K. Yamaguchi. J. Am. Chem. Soc., 2002, 124, 9648–9655.

    Article  CAS  PubMed  Google Scholar 

  24. D. Sajan, H. Joe, V. S. Jayakumar, and J. Zaleski. J. Mol. Struct., 2006, 785, 43–53.

    Article  CAS  Google Scholar 

  25. M. Arivazhagan and S. Jeyavijayan. Spectrochim. Acta A, 2011, 79, 376–383.

    Article  CAS  Google Scholar 

  26. L. Rajith, A. K. Jissy, K. G. Kumar, and A. Datta. J. Phys. Chem. C, 2011, 115, 21858–21864.

    Article  CAS  Google Scholar 

  27. A. E. Reed, L. A. Curtiss, and F. Weinhold. Chem. Rev., 1988, 88, 899–926.

    Article  CAS  Google Scholar 

  28. J. P. Foster and F. Weinhold. J. Am. Chem. Soc., 1980, 102, 7211–7218.

    Article  CAS  Google Scholar 

  29. J. Chocholousova, V. V. Spirko, and P. Hobza. Phys. Chem. Chem. Phys., 2004, 6, 37–41.

    Article  CAS  Google Scholar 

  30. E. D. Glendening, A. E. Reed, J. E. Carpenter, and F. Weinhold. NBO Version 3.1. Madison: TCI, University of Wisconsin, 1998.

    Google Scholar 

  31. S. Sebastian and N. Sundaraganesan. Spectrochim. Acta A, 2010, 75, 941–952.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Venkatram Reddy.

Additional information

Original Russian Text © 2018 G. Ramesh, J. Prashanth, J. Laxman Naik, B. Venkatram Reddy.

The text was submitted by the authors in English. Zhurnal Strukturnoi Khimii, Vol. 59, No. 5, pp. 1067–1076, June-July, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramesh, G., Prashanth, J., Laxman Naik, J. et al. Molecular Structure, Vibrational Analysis, Hyperpolarizability and NBO Analysis of 3-Methyl-Picolinic Acid Using SQM Calculations. J Struct Chem 59, 1022–1031 (2018). https://doi.org/10.1134/S0022476618050037

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476618050037

Keywords

Navigation