Skip to main content
Log in

Nanostructured Chitosan: Synthesis Technique and Biological Activity

  • POLYMER, BIOORGANIC, AND HYBRID NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

Nanoparticles of pure chitosan of different molecular weights are synthesized by fractional precipitation at pH 5 and 7.5. The formation of dense particles at pH 7.5 and loose gel-like particles at pH 5 is established by atomic-force microscopy. The nanoparticle dispersion obtained at pH 5 exhibits high fungicidal and bactericidal activity against Сochliobolus sativus, Alternaria solani Sorauer, and Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. (strain 101) due to the higher availability of amino groups in looser nanoparticles. A procedure for synthesizing chitosan nanoparticles is proposed, which is ecologically friendly and makes it possible to obtain biocompatible bactericidal and fungicidal agents for plant protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. M. Rinaudo, Prog. Polym. Sci. 31, 603 (2006).

    Article  CAS  Google Scholar 

  2. V. E. Tikhonov, E. A. Stepnova, V. G. Babak, et al., Carbohydr. Res. 64, 66 (2006) https://doi.org/10.1016/j.carbpol.2005.10.021

    Article  CAS  Google Scholar 

  3. S. N. Chirkov, A. V. Il’ina, N. A. Surgucheva, et al., Russ. J. Plant Physiol. 48, 774 (2001).

    Article  CAS  Google Scholar 

  4. A. El Hadrami, L. R. Adam, I. El Hadrami, and F. Daayf, Marine Drugs 8, 968 (2010). https://doi.org/10.3390/md8040968

    Article  CAS  Google Scholar 

  5. V. Saharan and A. Pal, “Chitosan Based Nanomaterials in Plant Growth and Protection,” in Briefs in Plant Science (Springer, 2006).

    Google Scholar 

  6. W. Wang, Q. Meng, Q. Li, et al., Int. J. Mol. Sci. 21, 487 (2020). https://doi.org/10.3390/ijms21020487

    Article  CAS  Google Scholar 

  7. H. K. V. Prashanth and R. N. Tharanathan, Trends Food Sci. Technol. 18, 117 (2007). https://doi.org/10.1016/j.tifs.2006.10.022

    Article  CAS  Google Scholar 

  8. V. K. Mourya and N. N. Inamdar, React. Funct. Polym. 68, 1013 (2008). https://doi.org/10.1016/j.reactfunctpolym.2008.03.002

    Article  CAS  Google Scholar 

  9. A. V. Il’ina, A. A. Zubareva, D. V. Kurek, et al., Nanotechnol. Russia 7, 85 (2012).

    Article  Google Scholar 

  10. M. E. J. Badawy and E. I. Rabea, Int. J. Carbohyd. Chem. 29, 460381 (2011). https://doi.org/10.1155/2011/460381

    Article  CAS  Google Scholar 

  11. V. P. Varlamov, A. V. Il’ina, B. T. Shagdarova, et al., Biochemistry (Moscow) 85, 154 (2020).

    Article  CAS  Google Scholar 

  12. R. Nair, S. H. Varghese, B. G. Nair, et al., Plant Sci. 179, 154 (2010). https://doi.org/10.1016/j.plantsci.2010.04.012

    Article  CAS  Google Scholar 

  13. A. V. Il’ina, V. P. Varlamov, Yu. A. Ermakov, et al., Dokl. Chem. 421, 165 (2008).

    Article  Google Scholar 

  14. M. Sathiyabama, “Biopolymeric Nanoparticles As a Nanocide for Crop Protection,” in Nanoscience for Sustainable Agriculture, Ed. by R. Pudake (Springer, 2019). https://doi.org/10.1007/978-3-319-97852-9_6

    Book  Google Scholar 

  15. R. C. Choudhary, R. V. Kumaraswamy, S. Kumari, et al., Synthesis, Characterization, and Application of Chitosan Nanomaterials Loaded with Zinc and Copper for Plant Growth and Protection, Ed. by R. Prasad (Springer Nature Singapore, 2017). https://doi.org/10.1007/978-981-10-4573-8_10

    Book  Google Scholar 

  16. M. A. Fleischer and R. E. O’Neill, Plant Physiol. 121, 829 (1999).

    Article  CAS  Google Scholar 

  17. E. Navarro, A. Braun, R. Behra, et al., Ecotoxicology 17, 372 (2008). https://doi.org/10.1007/s10646-008-0214-0

    Article  CAS  Google Scholar 

  18. M. N. Moore, Environ. Int. 32, 967 (2006). https://doi.org/10.1016/j.envint.2006.06.014

    Article  CAS  Google Scholar 

  19. C. Hendrickson, H. Garett, and L. Bunderson, Agric. Res. Tech.: Open Access J. 11, 555803 (2017). https://doi.org/10.19080/ARTOAJ.2017.11.555803

    Article  Google Scholar 

  20. S. Bandara, H. Du, L. Carson, et al., Nanomaterials 10, 1903 (2020). https://doi.org/10.3390/nano10101903

    Article  CAS  Google Scholar 

  21. R. V. Kumaraswamy, S. Kumari, R. C. Choudhary, et al., Int. J. Biol. Macromol. 113, 494 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.130

    Article  CAS  Google Scholar 

  22. S. Chandra, N. Chakraborty, A. Dasgupta, et al., Sci. Rep. 5, 15195. https://doi.org/10.1038/srep15195

  23. V. Saharan, G. Sharma, M. Yadav, et al., Int. J. Biol. Macromol. 75, 346 (2015). https://doi.org/10.1016/j.ijbiomac.2015.01.027

    Article  CAS  Google Scholar 

  24. K. Xing, X. Shen, X. Zhu, et al., Int. J. Biol. Macromol. 82, 830 (2016). https://doi.org/10.1016/j.ijbiomac.2015.09.074

    Article  CAS  Google Scholar 

  25. S. N. Van, H. D. Minh, and D. N. Anh, Biocatal. Agric. Biotechnol. 2, 289 (2013). https://doi.org/10.1016/j.bcab.2013.06.001

    Article  Google Scholar 

  26. V. Saharan, A. Mehrotra, R. Khatik, et al., Int. J. Biol. Macromol. 62, 677 (2013). https://doi.org/10.1016/j.ijbiomac.2013.10.012

    Article  CAS  Google Scholar 

  27. A. Manikandan and M. Sathiyabama, Int. J. Biol. Macromol. 84, 58 (2015). https://doi.org/10.1016/j.ijbiomac.2015.11.083

    Article  CAS  Google Scholar 

  28. S. K. Shukla, A. K. Mishra, and O. A. Arotiba, Int. J. Biol. Macromol. 59, 46 (2013). https://doi.org/10.1016/j.ijbiomac.2013.04.043

    Article  CAS  Google Scholar 

  29. L. R. Khot, S. Sankaran, and J. Maja, Crop Prot. 35, 64 (2012). https://doi.org/10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  30. S. Eshghi, M. Hashemi, A. Mohammadi, et al., Food Bioprocess Technol. 7, 2397 (2014). https://doi.org/10.1007/s11947-014-1281-2

    Article  CAS  Google Scholar 

  31. O. Cota-Arriola, M. O. Cortez-Rocha, A. Burgos-Hernandez, et al., J. Sci. Food Agric. 93, 1525 (2013). https://doi.org/10.1002/jsfa.6060

    Article  CAS  Google Scholar 

  32. V. Saharan, R. Kumaraswamy, R. C. Choudhary, et al., J. Agric. Food Chem. 64, 6148 (2016). https://doi.org/10.1021/acs.jafc.6b02239

    Article  CAS  Google Scholar 

  33. P. S. Nugraheni, A. H. Soeriyadi, U. Ustadi, et al., J. Eng. Technol. Sci. 51, 430 (2019). https://doi.org/10.5614/j.eng.technol.sci.2019.51.3.9

    Article  CAS  Google Scholar 

  34. M. Borgogna and P. Blasi, et al., Int. J. Pharm. 455, 219 (2013). https://doi.org/10.1016/j.ijpharm.2013.07.034

    Article  CAS  Google Scholar 

  35. E. V. Popova, I. M. Zorin, N. S. Domnina, et al., Russ. J. Gen. Chem. 90, 1 (2020). https://doi.org/10.1134/S1070363220070178

    Article  Google Scholar 

  36. N. I. Kupreev and V. A. Kuznetsov, RFV Patent 2428432 (2011).

  37. P. S. Vlasov, A. A. Kiselev, N. S. Domnina, et al., Russ. J. Appl. Chem. 82, 1675 (2009). https://doi.org/10.1134/S1070427209090298

    Article  CAS  Google Scholar 

  38. J. Z. Knaul, S. M. Hudson, and K. A. Creber, J. Appl. Polym. Sci. 72, 1721 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990624)72:13<1721::AID-APP8>3.0.CO;2-V

    Article  CAS  Google Scholar 

  39. C. E. Wolf and W. R. Gibbons, J. Appl. Bacteriol. 80, 453 (1996).

    Article  CAS  Google Scholar 

  40. R. Y. Milusheva and S. S. Rashidova, Polym. Sci. Ser. C 59, 29 (2017). https://doi.org/10.7868/S2308114717010058

    Article  CAS  Google Scholar 

  41. L. Y. Ing, N. M. Zin, A. Sarwar, and H. Katas, Int. J. Biomater. 2012, 632698 (2012). https://doi.org/10.1155/2012/632698

    Article  CAS  Google Scholar 

  42. W. M. Abdeltwab, Y. F. Abdelaliem, W. A. Metry, and M. Eldeghedy, J. Adv. Lab. Res. Biol. 10, 8 (2019). https://doi.org/10.1080/19476337.2020.1772887

    Article  CAS  Google Scholar 

  43. N. F. C. B. Melo, B. L. De Mendonçasoares, K. M. Diniz, et al., Postharvest Boil. Technol. 139, 56 (2018). https://doi.org/10.1016/j.postharvbio.2018.01.014

    Article  CAS  Google Scholar 

  44. J. García-Rincón, J. Vega-Pérez, M. G. Guerra-Sánchez, et al., Pestic. Biochem. Physiol. 97, 275 (2010). https://doi.org/10.1016/j.pestbp.2010.03.008

    Article  CAS  Google Scholar 

  45. L. Qi, Z. Xu, X. Jiang, et al., Carbohydr. Res. 339, 2693 (2004). https://doi.org/10.1016/j.carres.2004.09.007

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Zorin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E.V., Domnina, N.S., Zorin, I.M. et al. Nanostructured Chitosan: Synthesis Technique and Biological Activity. Nanotechnol Russia 18, 238–246 (2023). https://doi.org/10.1134/S2635167623700088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167623700088

Navigation