Skip to main content
Log in

Effect of Nanochitosan-Based Coating With and Without Copper Loaded on Physicochemical and Bioactive Components of Fresh Strawberry Fruit (Fragaria x ananassa Duchesne) During Storage

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Edible coatings based on nanochitosan (50–110 nm) with and without copper loaded were evaluated on physicochemical and bioactive components of strawberry. Fresh fruits were coated with copper-free and copper-loaded nanochitosans and stored at 4 ± 1 °C with 70 % relative humidity for 20 days. Both nanochitosan coatings provided an effective control in reducing weight loss and firmness as well as delayed changes in the respiration rate during 3 weeks. The antioxidant activity declined throughout the storage period of strawberries, although the decrease in antioxidant activity showed a slower rate in the strawberries coated with copper-free nanochitosan followed by copper-loaded nanochitosan compared with the control. Anthocyanin concentrations increased in fruits coated with copper free as well as copper-loaded nonochitosan at the first 12 days of storage followed by reduction in slow rates. However, no increase of anthocyanin was recorded for uncoated samples. Intensive reduction was recorded in ascorbic acid content of strawberries coated with copper-loaded nanochitosan, while the minimum loss of the ascorbic acid content was related to the copper-free nanochitosan. Also, both nanochitosans showed a significant suppression on the polyphenol oxidase and peroxidase activity, whereas a high rate of increase was recorded in control strawberry. The nanochitosan coatings with or without copper loaded significantly suppressed the visual loss and fungal decay of the strawberries during the storage compared with the control. The sensory evaluation of coated strawberries revealed that no effect on the consumer acceptability was detected as well as that copper-free nanochitosan showed better results in the point of preserving the overall flavor and appearance compared with the copper-loaded one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agar, I. T., Streif, J., & Bangerth, F. (1997). Effect of high CO2 and controlled atmosphere (CA) on the ascorbic and dehydroascorbic acid content of some berry fruits. Postharvest Biology and Technology, 11(1), 47–55.

    Article  CAS  Google Scholar 

  • Almenar, E., Hernandez-Munoz, P., & Gavara, R. (2009). Evolution of selected volatiles in chitosan-coated strawberries (Fragaria x ananassa) during refrigerated storage. Journal of Agriculture & Food Chemistry, 57(3), 974–980.

    Article  CAS  Google Scholar 

  • Anton, N., Gayet, P., Benoit, J.-P., & Saulnier, P. (2007). Nano-emulsions and nanocapsules by the PIT method: An investigation on the role of the temperature cycling on the emulsion phase inversion. International Journal of Pharmaceutics, 344(1–2), 44–52.

    Article  CAS  Google Scholar 

  • Anton, N., Benoit, J. P., & Saulnier, P. (2008). Design and production of nanoparticles formulated from nano-emulsion templates—a review. Journal of Controlled Release, 128(3), 185–199.

    Article  CAS  Google Scholar 

  • Association of Analytical Communities. (2005). Official methods of analysis of AOAC International (18th ed.). Gaithersburg: Association of Analytical Communities.

    Google Scholar 

  • Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & Gonzalez-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT Food Sciense and Technology, 37(7), 687–695.

    Article  CAS  Google Scholar 

  • Badawy, M. E. I., & Rabea, E. I. (2009). Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biology and Technology, 51(1), 110–117.

    Article  CAS  Google Scholar 

  • Bautista-Banos, S., Hernandez-Lauzardo, A. N., Velázquez-Del Valle, M. G., Hernández-López, M., AitBarka, E., Bosquez-Molina, E., et al. (2006). Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection, 25(2), 108–118.

    Article  CAS  Google Scholar 

  • Bodelón, O. G., Blanch, M., Sanchez-Ballesta, M. T., Escribano, M. I., & Merodio, C. (2010). The effects of high CO2 levels on anthocyanin composition, antioxidant activity and soluble sugar content of strawberries stored at low non-freezing temperature. Food Chemistry, 122(3), 673–678.

    Google Scholar 

  • Brunel, F., El Gueddari, N. E., & Moerschbacher, B. M. (2013). Complexation of copper (II) with chitosan nanogels: Toward control of microbial growth. Carbohydrate Polymers, 92(2), 1348–1356.

    Article  CAS  Google Scholar 

  • Calvo, P., Remunan-Lopez, C., Vila-Jato, J. L., & Alonso, M. J. (1997). Novel hydrophilic chitosan–poly ethylene oxide nanoparti- cles as protein carriers. Journal of Applied Polymer Science, 63(1), 125–132.

    Article  CAS  Google Scholar 

  • Cao, S., Hu, Z., & Pang, B. (2010). Optimization of postharvest ultrasonic treatment of strawberry fruit. Postharvest Biology and Technology, 55(3), 150–153.

    Article  Google Scholar 

  • Carcelli, M., Mazza, P., Pelizzi, C., & Pelizzi, G. (1995). Antimicrobial and genotoxic activity of 2,6-diacetylpyridinebis (acylhydrazones) and their complexes with some first transition series metal ions. X-ray crystal structure of a dinuclear copper(II) complex. Journal of Inorganic Biochemistry, 57(1), 43–62.

    Article  CAS  Google Scholar 

  • Cervantes-Cervantes, M. P., Calderon-Salinas, J. V., Albores, A., & Munoz-Sanchez, J. L. (2005). Copper increases the damage to DNA and proteins caused by reactive oxygen species. Biological Trace Elements Research, 103(3), 229–248.

    Article  CAS  Google Scholar 

  • Chen, S. P., Wu, G. Z., & Zeng, H. Y. (2005). Preparation of high antimicrobial activity thiourea chitosan–Ag+ complex. Carbohydrate Polymers, 60(1), 33–38.

    Article  CAS  Google Scholar 

  • Chisari, M., Barbagallo, R. N., & Spagna, G. (2007). Characterization of polypheno oxidase and peroxidase and influence on browning of cold stored strawberry fruit. Journal of Agricultural and Food Chemistry, 55(9), 3469–3476.

    Article  CAS  Google Scholar 

  • Civello, P. M., Martinez, G. A., Chaves, A. R., & Anon, M. C. (1997). Heat treatments delay ripening and postharvest decay of strawberry fruit. Journal of Agricultural and Food Chemistry, 45(12), 4589–4594.

    Article  CAS  Google Scholar 

  • Cordenunsi, B. R., Nascimento, J. R. O., & Lajolo, F. M. (2003). Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chemistry, 83(2), 167–173.

    Article  CAS  Google Scholar 

  • Del-Valle, V., Hernández-Munoz, P., Guarda, A., & Galloto, M. J. (2005). Development of a cactus-mucilage edible coating (Opuntia ficus indica) and its application to extend strawberry shelf-life. Food Chemistry, 91(4), 751–756.

    Article  CAS  Google Scholar 

  • Devlieghere, F., Vermeulen, A., & Debevere, J. (2004). Chitosan: antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiology, 21(6), 703–714.

    Article  CAS  Google Scholar 

  • Domek, M. J., LeChevallier, M. W., & McFeters, G. A. (1984). Evidence for the role of copper in the injury process of coliforms in drinking water. Applied and Environmental Microbiology, 48(2), 289–293.

    CAS  Google Scholar 

  • Du, J., Hiroshi, G., & Iwahori, S. (1997). Effects of chitosan coating on the storage of peach, Japanese pear, and kiwifruit. Journal of the Japanese Society of Horticultural Science, 66(1), 15–22.

    Article  CAS  Google Scholar 

  • Duan, J., Wu, R., Strik, B. C., & Zhao, Y. (2011). Effect of edible coatings on the quality of fresh blueberries under commercial storage conditions. Postharvest Biology and Technology, 59(1), 71–79.

    Article  CAS  Google Scholar 

  • El Ghaouth, A., Arul, J., Ponnampalam, R., & Boulet, M. (1991). Chitosan coating effect on stability and quality of fresh strawberries. Journal of Food Science, 56(6), 1618–1620.

    Article  Google Scholar 

  • El Ghaouth, A., Ponnampalam, R., Castaigne, F., & Arul, J. (1992a). Chitosan coating to extend the storage life of tomatoes. HortScience, 27(9), 1016–1018.

    Google Scholar 

  • El Ghaouth, A., Arul, J., Grenier, J., & Asselin, A. (1992b). Antifungal activity of chitosan on two post-harvest pathogens of strawberry fruits. Postharvest pathology and Mycotoxins, 82(4), 398–402.

    Google Scholar 

  • Garcia, J. M., Aguilera, C., & Albi, M. A. (1995). Postharvest heat-treatment on spanish strawberry. Journal of Agricultural and Food Chemistry, 43(6), 1489–1492.

    Article  CAS  Google Scholar 

  • Garcia, J. M., Herrea, S., & Morilla, A. (1996). Effects of postharvest dips in calcium chloride on strawberry. Journal of Agricultural and Food Chemistry, 44(1), 30–33.

    Article  CAS  Google Scholar 

  • Given, N. K., Venis, M. A., & Grierson, D. (1988). Phenylalanine ammonia-lyase activity and anthocyanin synthesis in ripening strawberry fruit g. Journal of Plant Physiology, 133(1), 25–30.

    Article  CAS  Google Scholar 

  • Gol, N. B., Patel, P. R., & Ramana Rao, T. V. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85, 185–195.

    Article  CAS  Google Scholar 

  • He, F., Mu, L., Yan, G. L., Liang, N. N., Pan, Q. H., Wang, J., et al. (2010). Biosynthesis of anthocyanins and their regulation in colored grapes. Molecules, 15, 9057–9091.

    Article  CAS  Google Scholar 

  • Hernández-Munoz, P., Almenar, E., Ocio, M. J., & Gavara, R. (2006). Effect of calcium dips and chitosan coatings on postharvest life of strawberries. Postharvest Biology and Technology, 39(3), 247–253.

    Article  Google Scholar 

  • Hernández-Munoz, P., Almenar, E., Valle, V. D., Velez, D., & Gavara, R. (2008). Effect of chitosan coating combined with postharvest calcium treatment on strawberry quality during refrigerated storage. Food Chemistry, 110(2), 428–435.

    Article  Google Scholar 

  • Hosokawa M, Nogi K, Naito M & Yokoyama T (ed) (2012a) Structural control of nanoparticles. In: Nanoparticle Technology Handbook (Second Edition). Elsevier, Amsterdam, 51–112

  • Hosokawa M, Nogi K, Naito M & Yokoyama T (ed) (2012b) Characteristics and behavior of nanoparticles and its dispersion systems. In: Nanoparticle Technol. Handbook (Second Edition). Elsevier, Amsterdam, 115–175.

  • Huang, K. S., Sheu, Y. R., & Chao, I. C. (2009). Preparation and properties of nanochitosan. Polymer Technology Engineering, 48 (2), 1239–1243.

    Google Scholar 

  • Ing, L. Y.,  Zin, N. M., Sarwar, A., & Katas, H. (2012). Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials, http://dx.doi.org/10.1155/2012/632698, Article ID 632698.

  • Janes, K. A., & Alonso, M. J. (2003). Depolymerized chitosan nanoparticles for pro-tein delivery: preparation and characterization. Journal of Applied Polymer Science, 88(12), 2769–2776.

    Article  CAS  Google Scholar 

  • Jantova, S., Labuda, J., Vollek, V., & Zaskova, M. (1997). Antimicrobial effects of the macrocyclic Cu(II)-tetraanhydroanimobenzaldehyde complex. Folia Microbiologica, 42(4), 324–326.

    Article  CAS  Google Scholar 

  • Kalt, W., Forney, C. F., Martin, A., & Prior, R. L. (1999). Antioxidant capacity, vitamin C, phenolics, and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry, 47(11), 4638–4644.

    Google Scholar 

  • Kan, J., Wang, H.-m., Jin, C.-h., & Xie, H.-y. (2010). Changes of reactive oxygen species and related enzymes in mitochondria respiratory metabolism during the ripening of peach fruit. Agricultural Sciences in China, 9(1), 138–146.

    Google Scholar 

  • Kelebek, H., Selli, S., Canbas, A., & Cabaroglu, T. (2009). HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan. Microchemical Journal, 91(2), 187–192.

    Article  CAS  Google Scholar 

  • Kittur, F. S., Saroja, N., & Tharanathan, R. N. (2001). Polysaccharide- based composite coating formulations for shelf-life extension of fresh banana and mango. European Food Research and Technology, 213(4–5), 306–311.

    Article  CAS  Google Scholar 

  • Lambert, Y., Demazeau, G., Largeteau, A., & Bouvier, J. M. (1999). Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chemistry, 67(1), 7–16.

    Article  CAS  Google Scholar 

  • Lopez-Serrano, M. L., & Barcelo, A. R. (2002). Comparative study of the products of the peroxidase-catalyzed and the polyphenoloxidase-catalyzed (+)-catechin oxidation. Their possible implications in strawberry (Fragaria x ananassa) browning reactions. Journal of Agricultural and Food Chemistry, 50(5), 1218–1224.

    Article  CAS  Google Scholar 

  • Lorevice, M. V., de Moura Márcia, R., Aouada Fauze, A., & Mattoso Luiz, H. C. (2012). Development of novel guava puree films containing chitosan nanoparticles. Journal of Nanoscience and Nanotechnology, 12(3), 2711–2717.

  • Maftoonazad, N., & Ramaswamy, H. S. (2005). Postharvest shelf-life extension of avocados using methyl cellulose-based coating. LWT- Food Science and Technology, 38(6), 617–624.

    Article  CAS  Google Scholar 

  • Martelli, M. R., Barros, T. T., de Moura, M. R., Mattoso, L. H. C., & Assis, O. B. G. (2013). Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. Journal of Food Science, 78, N98–N104.

    Article  CAS  Google Scholar 

  • Mayer, A. M. (1987). Polyphenol oxidases in plants—recent progress. Phytochemistry, 26, 11–20.

    Article  Google Scholar 

  • Nunes, M. C. N., Brecht, J. F., Morais, A. M. M. B., & Sargent, S. A. (2005). Possible influences of water loss and polyphenol oxidase activity on anthocyanin content and discolouration in fresh ripe strawberry (cv. Oso Grande) during storage at 1 °C. Journal of Food Science, 70(1), S79–S84.

    Article  CAS  Google Scholar 

  • Nunes, M. C. N., Brecht, J. K., Morais, A., & Sargent, S. A. (1998). Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. Journal of Food Science, 63(6), 1033–1036.

    Article  CAS  Google Scholar 

  • Peniche, C., Arguelles-Monal, W., & Goycoolea, F. M. (2008). Chitin and chitosan: major sources, properties and applications. In B. Mohamed Naceur & G. Alessandro (Eds.), Monomers, Polymers and Composites from Renewable Resources. Amsterdam: Elsevier.

    Google Scholar 

  • Perdones, A., Sánchez-González, L., Chiralt, A., & Vargas, M. (2012). Effect of chitosan–lemon essential oil coatings on storage-keeping quality of strawberry. Postharvest Biology and Technology, 70, 32–41.

    Article  CAS  Google Scholar 

  • Pey, C. M., Maestro, A., Sole, I., Gonzalez, C., Solans, C., & Gutierrez, J. M. (2006). Optimization of nano-emulsions prepared by low-energy emulsification methods at constant temperature using a factorial design study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 288(1–3), 144–150.

    Article  CAS  Google Scholar 

  • Pinto, M. S., Lajolo, F. M., & Genovese, M. I. (2008). Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria x ananassa Duch.). Food Chemistry, 107, 1629–1635.

    Article  Google Scholar 

  • Poovaiah, B. W. (1986). Role of calcium in prolonging storage life of fruits and vegetables. Food Technology, 40(5), 86–88.

    CAS  Google Scholar 

  • Rampino A, Borgogna M. Blasi P, Bellich B, Cesàro A (2013) Chitosan nanoparticles: preparation, size evolution and stability. International Journal of Pharmaceutics. http://dx.doi.org/10.1016/j.ijpharm.2013.07.034.

  • Rege, P. R., Garmise, R. J., & Block, L. H. (2003). Spray-dried chitinosans. Part I: preparation and characterization. International Journal of Pharmaceutics, 252(1–2), 41–51.

    Article  CAS  Google Scholar 

  • Riberio, C., Vicente, A. A., Teixeira, J. A., & Miranda, C. (2007). Optimization of edible coating composition to retard strawberry fruit senescence. Postharvest Biology and Technology, 44(1), 63–70.

    Article  Google Scholar 

  • Rinaudo, M. (2006). Chitin and chitosan: properties and applications. Progress in Polymer Science, 31(7), 603–632.

    Article  CAS  Google Scholar 

  • Robards, K., Prenzler, P. D., Tucker, G., Swatsitang, P., & Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chemistry, 66(4), 401–436.

    Article  CAS  Google Scholar 

  • Sánchez-Mata, M. C., Ca´mara-Hurtado, M., Diez-Marques, C., & Torija-Isasa, M. E. (2000). Comparison of high-performance liquid chromatography and spectrofluorimetry for vitamin C analysis of green beans (Phaseolus Vulgaris L.). European Food Research and Technology, 210(3), 220–225.

    Article  Google Scholar 

  • Savini, L., D'Alesio, S., Giartosio, A., Morpurgo, L., & Avigliano, L. (1990). The role of copper in the stability of ascorbate oxidase towards denaturing agents. European Journal of Biochemistry, 190(3), 491–495.

    Article  CAS  Google Scholar 

  • Shin, Y., Liu, R. H., Nock, J. F., Holliday, D., & Watkins, C. B. (2007). Temperature and relative humidity effects on quality, total ascorbic acid, phenolics and flavonoid concentrations, and antioxidant activity of strawberry. Postharvest Biology and Technology, 45(3), 349–357.

    Article  CAS  Google Scholar 

  • Shin, Y., Ryu, J. A., Liu, R. H., Nock, J. F., & Watkins, C. B. (2008). Harvest maturity, storage temperature and relative humidity affect fruit quality, antioxidant contents and activity, and inhibition of cell proliferation of strawberry fruit. Postharvest Biology and Technology, 49(2), 201–209.

    Article  CAS  Google Scholar 

  • Siriphanich, J. (1998). High CO2 atmosphere enhances fruit firmness during storage. Journal of the Japanese Society for Horticultural Science, 67(6), 1167–1170.

    Article  CAS  Google Scholar 

  • Tanada-Palmu, P. S., & Grosso, C. R. F. (2005). Effect of edible wheat gluten-based films and coatings on refrigerated strawberry quality. Postharvest Biology and Technolology, 36(2), 199–208.

    Article  CAS  Google Scholar 

  • Terefe, N. S., Matihaies, K., Simons, L., & Versteeg, C. (2009). Combined high pressure-mild temperature processing for optimal retention of physical and nutritional quality of strawberries. Innovative Food Science and Emerging Technologies, 10(3), 297–307.

    Article  CAS  Google Scholar 

  • Tomas-Barberan, F. A., & Espin, J. C. (2001). Phenolic compounds and related enzymes as determinants of quality in fruits and vegetables. Journal of the science of food and agriculture, 81(9), 853–876.

    Article  CAS  Google Scholar 

  • Van De Velde, F., Tarola, A. M., Guemes, D., & Pirovani, M. E. (2013). Bioactive compoundsand antioxidant capacity of Camarosa and Selva strawberries (Fragaria x ananassa Duch.). Foods, 2, 120–131.

    Article  Google Scholar 

  • Vargas, M., Albors, A., Chiralt, A., & Gonzalez-Martinez, C. (2006). Quality of cold-stored strawberries as affected by chitosan-oleic acid edible coatings. Postharvest Biology and Technology, 41(2), 164–171.

    Article  CAS  Google Scholar 

  • Vicente AR, Chaves AR, Civello PM & Martinez GA (2003) Effects of combination of heat treatments and modified atmospheres on strawberry fruit quality. Proceedings of the 8th International Controlled Atmosphere Research Conference, Vols I and II. 197–199.

  • Vu, K. D., Hollingsworth, R. G., Leroux, E., Salmieri, S., & Lacroix, M. (2011). Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Research International, 44(1), 198–203.

    Article  CAS  Google Scholar 

  • Wang, X. H., Du, Y. M., & Liu, H. (2004). Preparation, characterization and antimicrobial activity of chitosan–Zn complex. Carbohydrate Polymers, 56(1), 21–26.

    Article  CAS  Google Scholar 

  • Wang, S. Y., & Gao, H. (2013). Effect of chitosan-based edible coating on antioxidants, antioxidant enzyme system, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT - Food Science and Technology, 52(2), 71–79.

    Article  CAS  Google Scholar 

  • Wesche-Ebeling, P., & Montgomery, M. W. (1990). Strawberry polyphenoloxidase: its role in athocyanin degradation. Journal of Food Science, 55(3), 731–734.

    Article  CAS  Google Scholar 

  • Wills, R. B. H., Ku, V. V. V., & Leshem, Y. Y. (2000). Fumigation with nitric oxide to extend the postharvest life of strawberries. Postharvest Biology and Technology, 18(1), 75–79.

    Article  CAS  Google Scholar 

  • Wright, K. P., & Kader, A. A. (1997). Effect of slicing and controlled-atmosphere storage on the ascorbate content and quality of strawberries and persimmons. Postharvest Biology and Technology, 10(1), 39–48.

    Article  Google Scholar 

  • Yi, Y., Wang, Y. T., & Liu, H. (2003). Preparation of new crosslinked chitosan with crown ether and their adsorption for silver ion for antibacterial activities. Carbohydrate Polymers, 53(4), 425–430.

    Article  CAS  Google Scholar 

  • Zhang, J. Z. J., & Watkins, C. B. (2005). Fruit quality, fermentation products, and activities of associated enzymes during elevated CO2 treatment of strawberry fruit at high and low temperatures. Journal of American Society of Horticultural Science, 130(1), 124–130.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Agricultural Biotechnology Research Institute of Iran (ABRII) and the National Nutrition and Food Technology Research Institute of Iran. The authors also gratefully acknowledge the assistance of the Agricultural Engineering Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maryam Hashemi or Abdorreza Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eshghi, S., Hashemi, M., Mohammadi, A. et al. Effect of Nanochitosan-Based Coating With and Without Copper Loaded on Physicochemical and Bioactive Components of Fresh Strawberry Fruit (Fragaria x ananassa Duchesne) During Storage. Food Bioprocess Technol 7, 2397–2409 (2014). https://doi.org/10.1007/s11947-014-1281-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-014-1281-2

Keywords

Navigation