Skip to main content
Log in

Evolution of the Structure and Properties of Cu–6% Nb Microcomposite Wire during Long-Term Temperature Tests

  • FUNCTIONAL AND CONSTRUCTION NANOMATERIALS
  • Published:
Nanobiotechnology Reports Aims and scope Submit manuscript

Abstract

The electrical conductivity, mechanical strength and crystal structure of Cu–6 wt % Nb microcomposite wire upon exposure to a temperature of 450°C for up to 2000 hours are investigated. Structural changes are compared with the ultimate strength and electrical conductivity. Several mechanisms of strength degradation with different time constants are identified. Within long times, the ultimate strength decreases by 32% from the initial value while the electrical conductivity increases by no more than 2%. Strength degradation is accompanied by the relaxation of microstresses in the copper matrix and structural changes in the nanoscale niobium component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. X. Han, T. Peng, H. Ding, et al., Matter Radiat. Extremes 2, 278 (2017).

    Google Scholar 

  2. M. V. Polikarpova, P. A. Lukyanov, I. M. Abdyukhanov, et al., IEEE Trans. Appl. Supercond. 24, 6600604 (2014). https://doi.org/10.1109/TASC.2013.2286739

    Article  CAS  Google Scholar 

  3. P. A. Lukyanov, V. I. Pantsyrny, M. V. Polikarpova, et al., J. Phys.: Conf. Ser. 1559, 012061 (2020).

    CAS  Google Scholar 

  4. M. Sugimoto, H. Ii, D. Asami, et al., IEEE Trans. Appl. Supercond. 31, 6000605 (2021). https://doi.org/10.1109/TASC.2021.3066131

    Article  CAS  Google Scholar 

  5. V. I. Pantsyrnyi, N. E. Khlebova, N. A. Belyakov, and V. V. Sergeev, “Composite contact wire,” RF Patent No. 2703564 C1 (2019).

  6. T. G. Lach, E. H. Ekiz, R. S. Averback, et al., J. Nucl. Mater. 466, 36 (2015).

    Article  CAS  Google Scholar 

  7. M. J. Demkowicz, P. Bellon, and B. D. Wirth, MRS Bull. 35, 992 (2010).

    Article  CAS  Google Scholar 

  8. N. A. Mara and I. J. Beyerlein, J. Mater. Sci. 49, 6497 (2014).

    Article  CAS  Google Scholar 

  9. D. N. Klimenko, Yu. R. Kolobov, M. I. Karpov, V. P. Korzhov, E. V. Golosov, and I. V. Ratochka, Nanotechnol. Russ. 8, 783 (2013).

    Article  Google Scholar 

  10. P. A. Lukyanov, M. V. Polikarpova, V. V. Guryev, et al., Mater. Phys. Mech. 42, 731 (2019).

    CAS  Google Scholar 

  11. V. V. Guryev, M. V. Polikarpova, P. A. Lukyanov, et al., Cryogenics 90, 56 (2018).

    Article  CAS  Google Scholar 

  12. V. Pantsyrny, A. Shikov, A. Vorobieva, et al., IEEE Trans. Appl. Supercond. 16, 1656 (2006).

    Article  CAS  Google Scholar 

  13. E. N. Popova, I. L. Deryagina, E. G. Valova-Zaharevskaya, et al., Def. Diff. Forum 354, 183 (2014).

  14. I. L. Deryagina, E. N. Popova, E. G. Valova-Zakharevskaya, and E. I. Patrakov, Phys. Met. Metallogr. 119, 92 (2018).

    Article  CAS  Google Scholar 

  15. L. Deng, Han Ke, B. Wang, et al., Acta Mater. 101, 181 (2015).

    Article  CAS  Google Scholar 

  16. E. N. Popova and I. L. Deryagina, Phys. Met. Metallogr. 121, 1182 (2020).

    Article  CAS  Google Scholar 

  17. V. I. Pantsyrny, N. E. Khlebova, S. V. Sudyev, et al., EEE Trans. Appl. Supercond. 24, 0502804 (2014). https://doi.org/10.1109/TASC.2013.2293655

    Article  Google Scholar 

  18. V. Pantsyrny, M. Polikarpova, P. Lukyanov, et al., EEE Trans. Appl. Supercond. 30, 4301404 (2020). https://doi.org/10.1109/TASC.2020.2976061

    Article  CAS  Google Scholar 

  19. FullProf Suite. Crystallographic tools for Rietveld, profile matching and integrated intensity refinements of X-Ray and/or neutron data. https://www.ill.eu/sites/fullprof/index.html.

  20. V. Pantsyrnyi, A. Shikov, A. Vorobieva, et al., Phys. B (Amsterdam, Neth.) 294–295, 669 (2001).

  21. V. Pantsyrny, A. Shikov, A. Vorobieva, et al., IEEE Trans. Appl. Supercond. 10, 1263 (2000).

    Article  Google Scholar 

  22. E. Snoeck, F. Lecouturier, L. Thilly, et al., Scr. Mater. 38, 1643 (1998).

    Article  CAS  Google Scholar 

  23. Z. Nishiyama, Martensitic Transformation (Academic, New York, 1978).

    Google Scholar 

  24. L. Deng, Zh. Liu, B. Wang, et al., Mater. Charact. 150, 62 (2019). https://doi.org/10.1016/j.matchar.2019.02.002

    Article  CAS  Google Scholar 

  25. Yu. A. Burenkov, S. P. Nikanorov, B. I. Smirnov, and V. I. Kopylov, Phys. Solid State 45, 2119 (2003).

    Article  CAS  Google Scholar 

  26. L. Thilly, M. Veron, O. Luddwig, et al., Philos. Mag., A 82, 925 (2002). https://doi.org/10.1080/01418610208240010

    Article  CAS  Google Scholar 

  27. F. R. N. Nabarro, Mater. Sci. Eng. A 309–310, 227 (2001). https://doi.org/10.1016/S0921-5093(00)01692-0

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to D.Yu. Yashkin for helpful discussion of strength degradation.

Funding

The work was performed using equipment of the resource center “X-ray” and supported by the National Research Center “Kurchatov Institute”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Guryev.

Ethics declarations

We declare that we have no conflicts of interest.

Additional information

Translated by A. Muravev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guryev, V.V., Lukyanov, P.A., Golovkova, E.A. et al. Evolution of the Structure and Properties of Cu–6% Nb Microcomposite Wire during Long-Term Temperature Tests. Nanotechnol Russia 17, 328–335 (2022). https://doi.org/10.1134/S2635167622030065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2635167622030065

Navigation