Skip to main content
Log in

Hot Deformation Constitutive Analysis and Processing Maps of Cu-18 wt.%Nb Composite Wires

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, the hot deformation behavior and deformation mechanism of Cu-18 wt.%Nb composite wire was studied based on the development of constitutive equations and hot processing maps. The constitutive equation of Cu-18 wt.%Nb composites was established based on the hyperbolic sinusoidal Arrhenius-type model, and the hot processing maps were developed using the principles of the dynamic materials model (DMM). In a view of microstructure refinement and work ability improvement, the optimum processing should be selected in the temperature range of 650–730 °C and the strain rate range of 0.001-0.1 s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K. Maki, Y. Ito, H. Matsunaga, and H. Mori, Solid-Solution Copper Alloys with High Strength and High Electrical Conductivity, Scripta Mater., 2013, 68, p 777–780.

    Article  CAS  Google Scholar 

  2. N.N. Liang, J.Z. Liu, S.C. Lin, Y. Wang, J.T. Wang, Y.H. Zhao, and Y.T. Zhu, A Multiscale Architectured CuCrZr Alloy with High Strength, Electrical Conductivity and Thermal Stability, J. Alloy. Compd., 2018, 735, p 1389–1394.

    Article  CAS  Google Scholar 

  3. Z.S. Gao, T.T. Zuo, M. Wang, L. Zhang, B. Da, Y.D. Ru, J.L. Xue, Y. Wu, L. Han, and L.Y. Xiao, In-situ Graphene Enhanced Copper Wire: A Novel Electrical Material with Simultaneously hIgh Electrical Conductivity and High Strength, Carbon, 2022, 186, p 303–312.

    Article  CAS  Google Scholar 

  4. T. Gu, J.R. Medy, V. Klosek, O. Castelnau, S. Forest, E. Hervé-Luanco, F. Lecouturier-Dupouy, H. Proudhon, P.-O. Renault, L. Thilly, and P. Villechaise, Multiscale Modeling of the Elasto-Plastic Behavior of Architectured and Nanostructured Cu-Nb Composite Wires and Comparison with Neutron Diffraction Experiments, Int. J. Plast, 2019, 122, p 1–30.

    Article  CAS  Google Scholar 

  5. I.L. Deryagina, E.N. Popova, and E.G. Valova-Zaharevskaya, Structure and Thermal Stability of High-Strength Cu-18Nb Composite Depending on the Degree of Deformation, Phys. Met. Metall., 2018, 119, p 92–102.

    Article  CAS  Google Scholar 

  6. S.R. Bodner, and Y. Partom, Constitutive Equations for Elastic-Viscoplastic Strain-Hardening Materials, J. Appl. Mech., 1975, 42(2), p 385–389.

    Article  Google Scholar 

  7. F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-based Constitutive Relations for Material Dynamics Calculations, J. Appl. Phys., 1987, 61, p 1816–1817.

    Article  CAS  Google Scholar 

  8. P. Zhang, C. Hu, Q. Zhu, C.G. Ding, and H.Y. Qin, Hot Compression Deformation and Constitutive Modeling of GH4698 Alloy, Mater. Des., 2015, 65, p 1153–1160.

    Article  CAS  Google Scholar 

  9. J.Q. Luo, M.Y. Chen, and Z.M. Yin, Stress Strain Curve and Constitutive Model of TA15 Titanium Alloy in Hot Deformation, Rare Metal Mater. and Eng., 2017, 46(2), p 399–405.

    CAS  Google Scholar 

  10. Y. Zhang, H.L. Sun, A.A. Volinsky, B.J. Wang, B.H. Tian, Y. Liu, and K.X. Song, Constitutive Model for Hot Deformation of the Cu-Zr-Ce Alloy, J. Mater. Eng. Perform., 2018, 27, p 728–738.

    Article  CAS  Google Scholar 

  11. C.M. Sellars, The Kinetics of Softening Processes during Hot Working of Austenite, J. Phys., 1985, B35, p 239–248.

    Google Scholar 

  12. J.Y. Liao, M. Hu, D. Xu, and S.Q. Lu, Constitutive Relationship of TB6 Titanium Alloy Based on Mathematical Statistics Method, Hot Work. Technol., 2011, 40(12), p 5–12.

    Google Scholar 

  13. X.Y. Qian, X.B. Peng, Y.T. Song, J.J. Huang, Y.P. Wei, P. Liu, X. Mao, J.W. Zhang, and L. Wang, Dynamic Constitutive Relationship of CuCrZr Alloy Based on Johnson-Cook Model, Nucl. Mater. Energy, 2020, 24, p 100768.

    Article  Google Scholar 

  14. M.H. Wang, Y.C. Yang, S.L. Tu, and K. Wei, A Modified Constitutive Model and Hot compression Instability Behavior of Cu-Ag Alloy, Trans. Nonferrous Metals Soc. China, 2019, 29, p 764–774.

    Article  CAS  Google Scholar 

  15. T. Wei, Y.D. Wang, Z.H. Tang, and S.F. Xiao, The Constitutive Modeling and Processing Map of homogenIzed Al-Mg-Si-Cu-Zn Alloy, Mater. Today Commun., 2021, 27, p 102471.

    Article  CAS  Google Scholar 

  16. C. Zener and J.H. Hollomon, Effect of Strain–rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15, p 22–32.

    Article  Google Scholar 

  17. W.C. Yu, H.Y. Li, R. Du, W. You, M.C. Zhao, and Z.A. Wang, Characteristic Constitution Model and Microstructure of an Al-3.5Cu-1.5Li Alloy Subjected to Thermal Deformation, Mater. Charact., 2018, 145, p 53–64.

    Article  CAS  Google Scholar 

  18. Y.L. Song, J.K. Fan, X.D. Liu, and P.Z. Zhang, Thermal Processing Map and Microstructure Evolution of Inconel 625 Alloy Sheet Based on Plane Strain Compression Deformation, Materials, 2021, 14(17), p 5059.

    Article  CAS  Google Scholar 

  19. LY Zou Study on the Constitutive Relationship of Cu-Nb Metal Matrix Composites during Hot Deformation. Northeastern University. 8–9 (2012)

  20. Z.T. Wang, S.H. Zhang, G.X. Qi, F. Wang, and Y.J. Li, Constitutive Equation of Thermal Deformation for AZ31 Magnesium Alloy, Chin. J. Nonferrous Metals, 2008, 18(11), p 1977–1982.

    CAS  Google Scholar 

  21. M. Liang, L.Y. Zou, X.Y. Xu, P.F. Wang, C.S. Li, and P.X. Zhang, Constitutive Relationship of Nb Bulk Materials during Hot Compression, Rare Metal Mater. Eng., 2017, 46(4), p 985–989.

    CAS  Google Scholar 

  22. L.M. Lei, X. Huang, L.J. Huang, and C.X. Cao, Hot Deformation Behavior and Constitutive Relationship of As-cast TB6 Alloy, Chin. J. Nonferrous Metals, 2010, 20(1), p 376–379.

    Google Scholar 

  23. J.G. Lenard, Modeling Hot Deformation of Steels, Springer-Veriag, Berlin, 1989, p 101–115

    Book  Google Scholar 

  24. C.M. Sellars and W.J. Mctegart, On the Mechanism of Deformation, Acta Metall., 1966, 14, p 1136–1138.

    Article  CAS  Google Scholar 

  25. W.G. Zhao, X. Lin, S.Q. Lu, Z.H. Liu, and C.X. Cao, Study on Constitutive Relationship of TC11 Titanium Alloy During High Temperature Deformation, J. Plast. Eng., 2008, 15(3), p 123–127.

    CAS  Google Scholar 

  26. Z.N. Shen, R.D. Wu, C.L. Yuan, and W. Jiao, Comparative Study of Metamodeling Methods for Modeling the Constitutive Relationships of the TC6 Titanium Alloy, J. Market. Res., 2021, 10, p 188–204.

    CAS  Google Scholar 

  27. A.K. Shukla, S.V.S. Narayana Murty, S.C. Sharma, and K. Mondal, Constitutive Modeling of Hot Deformation Behavior of Vacuum Hot Pressed Cu-8Cr-4Nb Alloy, Mater. Des., 2015, 75, p 57–64.

    Article  CAS  Google Scholar 

  28. Y.V.R.K. Prasad, H.L. Gegel, and S.M. Doraivelu, Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, Metall. Trans. A, 1984, 15(10), p 1883–1892.

    Article  Google Scholar 

  29. J.Y. Yang and W.J. Kim, The Effect of Addition of Sn to Copper on Hot Compressive Deformation Mechanisms, Microstructural Evolution and Processing Maps, J. Market. Res., 2020, 9(1), p 749–761.

    CAS  Google Scholar 

  30. N. Bayat-Tork, R. Mahmudi, and M.M. Hoseini-Athar, Hot Deformation Constitutive Analysis and Processing Maps of Extruded Mg-Gd Binary Alloys, J. Market. Res., 2020, 9(6), p 15346–15359.

    CAS  Google Scholar 

Download references

Acknowledgment

The authors want to express their appreciation to the financially supported by the National Natural Science Foundation of China (Grant No. 52073233).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Wang or Ming Liang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Liang, M., Ma, X. et al. Hot Deformation Constitutive Analysis and Processing Maps of Cu-18 wt.%Nb Composite Wires. J. of Materi Eng and Perform 33, 1060–1070 (2024). https://doi.org/10.1007/s11665-023-08008-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08008-y

Keywords

Navigation