Skip to main content
Log in

Evaluation of the Effect of Electroosmosis on the Efficiency of Electrobaromembrane Separation with Track-Etched Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The results of a theoretical analysis of the influence of the electroosmotic flow on the electromigration and convective transport of competing ions separated by the electrobaromembrane process are presented. Separated ions of the same charge sign move in an electric field through the pores of a track-etched membrane to the corresponding electrode, while a commensurate convective counterflow being created by the pressure drop across the membrane. A simplified model based on the convective electrodiffusion equation and the Hagen–Poiseuille equation allows the analysis of experimental data using only the effective transport numbers of ions in the membrane as fitting parameters. Using a 2D mathematical model described by the system of Nernst–Planck, Navier–Stokes, and Poisson equations, it is shown that the electroosmotic flow can cause the effective transport numbers of competing ions to exceed their values in solution, even if these ions are coions for the membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. C. Tang, A. Yaroshchuk, and M. L. Bruening, Chem. Commun. 56, 10954 (2020).

    Article  CAS  Google Scholar 

  2. L. Ge, B. Wu, D. Yu, A. N. Mondal, L. Hou, N. U. Afsar, Q. Li, T. Xu, J. Miao, and T. Xu, Chinese J. Chem. Eng. 25, 1606 (2017).

    Article  Google Scholar 

  3. P. Wang, M. Wang, F. Liu, S. Ding, X. Wang, G. Du, J. Liu, P. Apel, P. Kluth, C. Trautmann, and Y. Wang, Nat. Commun. 9, 569 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. T. Humplik, J. Lee, S. C. O’Hern, B. A. Fellman, M. A. Baig, S. F. Hassan, M. A. Atieh, F. Rahman, T. Laoui, R. Karnik, and E. N. Wang, Nanotecnology 22, 292001 (2011).

    Article  CAS  Google Scholar 

  5. Q. Wen, D. Yan, F. Liu, M. Wang, Y. Ling, P. Wang, P. Kluth, D. Schauries, C. Trautmann, P. Apel, W. Guo, G. Xiao, J. Liu, J. Xue, and Y. Wang, Adv. Funct. Mater. 26, 5796 (2016).

    Article  CAS  Google Scholar 

  6. M. Beaulieu, V. Perreault, S. Mikhaylin, and L. Bazinet, Membranes 10, 113 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. He, A. T. Girgih, E. Rozoy, L. Bazinet, X.-R. Ju, and R. E. Aluko, Food Chem. 197, 1008 (2016).

    Article  CAS  PubMed  Google Scholar 

  8. N. Pismenskaya, K. Tsygurina, and V. Nikonenko, Membranes 5, 497 (2022).

    Article  Google Scholar 

  9. O. Nir, R. Sengpiel, and M. Wessling, Chem. Eng. J. 346, 640 (2018).

    Article  CAS  Google Scholar 

  10. R. Kumar, C. Liu, G.-S. Ha, Y.-K. Park, M. Ali Khan, M. Jang, S.-H. Kim, M. A. Amin, A. Gacem, and B.‑H. Jeon, Chem. Eng. J. 447, 137507 (2022).

    Article  CAS  Google Scholar 

  11. L. Ge, B. Wu, Q. Li, Y. Wang, D. Yu, L. Wu, J. Pan, J. Miao, and T. Xu, J. Membr. Sci. 498, 192 (2016).

    Article  CAS  Google Scholar 

  12. G. T. Ballet, A. Hafiane, and M. Dhahbi, J. Membr. Sci. 290, 164 (2007).

    Article  CAS  Google Scholar 

  13. J. López, M. Reig, E. Licon, C. Valderrama, O. Gibert, and J. L. Cortina, Sep. Purif. Technol. 290, 120914 (2022).

    Article  Google Scholar 

  14. Urbain Cecile, G. Marie, V. Perreault, L. Henaux, V. Carnovale, R. E. Aluko, A. Marette, A. Doyen, and L. Bazinet, Sep. Purif. Technol. 211, 242 (2019).

  15. F.-A. Masson, S. Mikhaylin, and L. Bazinet, J. Dairy Sci. 101, 7002 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. A. Ekman, P. Forssell, K. Kontturi, and G. Sundholm, J. Membr. Sci. 11, 65 (1982).

    Article  CAS  Google Scholar 

  17. P. Forssell and K. Kontturi, Sep. Sci. Technol. 18, 205 (1983).

    Article  Google Scholar 

  18. K. Kontturi and H. Pajari, Sep. Sci. Technol. 21, 1089 (1986).

    Article  CAS  Google Scholar 

  19. D. Y. Butylskii, N. D. Pismenskaya, P. Y. Apel, K. G. Sabbatovskiy, and V. V. Nikonenko, J. Membr. Sci. 635, 119449 (2021).

    Article  CAS  Google Scholar 

  20. D. Butylskii, V. Troitskiy, D. Chuprynina, I. Khar-chenko, I. Ryzhkov, P. Apel, N. Pismenskaya, and V. Nikonenko, Membranes 5, 455 (2023).

    Article  Google Scholar 

  21. C. Tang, M. P. Bondarenko, A. Yaroshchuk, and M. L. Bruening, J. Membr. Sci. 638, 119684 (2021).

    Article  CAS  Google Scholar 

  22. Z. F. Cui, Y. Jiang, and R. W. Field, Fundamentals of Pressure-Driven Membrane Separation Processes (Membrane Technology, 2010).

  23. D. Y. Butylskii, V. A. Troitskiy, D. A. Chuprynina, L. Dammak, C. Larchet, and V. V. Nikonenko, Membranes 13, 509 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. K. Kontturi, T. Ojala, and P. Forssell, J. Chem. Soc., Faraday Trans. 80, 3379 (1984).

    Article  CAS  Google Scholar 

  25. C. Tang, A. Yaroshchuk, and M. L. Bruening, Membranes 12, 631 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. D. Y. Butylskii, L. Dammak, C. Larchet, N. D. Pismenskaya, and V. V. Nikonenko, Russ. Chem. Rev. 92, RCR5074 (2023).

    Article  Google Scholar 

  27. K. Kontturi, P. Forssell, and A. Ekman, Sep. Sci. Technol. 17, 1195 (1982).

    Article  CAS  Google Scholar 

  28. K. Kontturi, P. Forssell, and A. H. Sipilä, J. Chem. Soc., Faraday Trans. 78, 3613 (1982).

    Article  CAS  Google Scholar 

  29. A. G. Kislyi, D. Yu. Butylskii, S. A. Mareev, and V. V. Nikonenko, Membr. Membr. Technol. 3, 131 (2021).

    Article  CAS  Google Scholar 

  30. O. Kedem and A. Katchalsky, Trans. Faraday Soc. 59, 1918 (1963).

    Article  Google Scholar 

  31. A. N. Filippov, Colloid J. 80, 716 (2018).

    Article  CAS  Google Scholar 

  32. A. N. Filippov, Colloid J. 80, 728 (2018).

    Article  CAS  Google Scholar 

  33. O. Kedem and V. Freger, J. Membr. Sci. 310, 586 (2008).

    Article  CAS  Google Scholar 

  34. Z. V. P. Murthy and L. B. Chaudhari, Chem. Eng. J. 150, 181 (2009).

    Article  CAS  Google Scholar 

  35. H. Kelewou, A. Lhassani, M. Merzouki, P. Drogui, and B. Sellamuthu, Desalination 277, 106 (2011).

    Article  CAS  Google Scholar 

  36. Z. Kovács, M. Discacciati, and W. Samhaber, J. Membr. Sci. 332, 38 (2009).

    Article  Google Scholar 

  37. A. M. Hidalgo, G. León, M. Gómez, M. D. Murcia, E. Gómez, and J. A. Macario, Membranes 10, 408 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. F. Wu, L. Feng, and L. Zhang, Desalination 362, 11 (2015).

    Article  CAS  Google Scholar 

  39. Y. Zhang, L. Zhang, L. Hou, S. Kuang, and A. Yu, AIChE J. 65, 1076 (2019).

    Article  CAS  Google Scholar 

  40. S. Ghosh, R. Klett, D. Fink, K. K. Dwivedi, J. Vacík, V. Hnatowicz, and J. Červena, Radiat. Phys. Chem. 55, 271 (1999).

    Article  CAS  Google Scholar 

  41. P. Apel, A. Schulz, R. Spohr, C. Trautmann, and V. Vutsadakis, Nucl. Instr. Meth. Phys. Res. Sect. B 146, 468 (1998).

    Article  CAS  Google Scholar 

  42. V. V. Berezkin, O. A. Kiseleva, A. N. Nechaev, V. D. Sobolev, and N. V. Churaev, Kolloidn. Zh. 56, 319 (1994).

    CAS  Google Scholar 

  43. V. V. Berezkin, V. I. Volkov, O. A. Kiseleva, N. V. Mitrofanova, and V. D. Sobolev, Adv. Colloid Interface Sci. 104, 325 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. P. Dejardin, E. N. Vasina, V. V. Berezkin, V. D. Sobolev, and V. I. Volkov, Langmuir 21, 4680 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. P. Apel, S. Koter, and A. Yaroshchuk, J. Membr. Sci. 653, 120556 (2022).

    Article  CAS  Google Scholar 

  46. V. S. Nichka, S. A. Mareev, P. Y. Apel, K. G. Sabbatovskiy, V. D. Sobolev, and V. V. Nikonenko, Membranes 12, 1283 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. R. Spohr, Ion Tracks and Microtechnology: Principles and Applications (Vieweg, Brunschweig, Germany, 1990). https://doi.org/10.1007/978-3-322-83103-3

  48. P. Y. Apel, Encyclopedia of Membrane Science and Technology, Ed. by E. M. V. Hoek and V. V. Tarabara (2013).

    Google Scholar 

  49. I. I. Ryzhkov, D. V. Lebedev, V. S. Solodovnichenko, A. V. Minakov, M. M. Simunin, J. Membr. Sci. 549, 616 (2018).

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Science Foundation, project no. 19-19-00381. https://rscf.ru/en/project/19-19-00381/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Nikonenko.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butylskii, D.Y., Mareev, S.A., Ryzhkov, I.I. et al. Evaluation of the Effect of Electroosmosis on the Efficiency of Electrobaromembrane Separation with Track-Etched Membranes. Membr. Membr. Technol. 5, 370–377 (2023). https://doi.org/10.1134/S2517751623050025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623050025

Keywords:

Navigation