Skip to main content
Log in

Electrochemical Behavior of Polyaniline-Modified Cation-Exchange Heterogeneous Membranes in Solutions Containing Mono- and Bivalent Cations

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

A series of composite ion-exchange membranes based on an heterogeneous cation-exchange MK‑40 membrane and polyaniline is obtained under the conditions of electrodiffusion of a monomer and an oxidizing agent. The process of polyaniline synthesis on the membrane surface is accompanied by recording of chronopotentiograms and pH of the solution leaving the desalination compartment. The initial cation-exchange MK-40 membrane and obtained composites based on it are studied by voltammetry and chronopotentiometry in solutions of NaCl, CaCl2, and MgCl2 in the same flow-type electrodialysis cell, in which the composites are obtained. To calculate the transport numbers of counterions in the membranes in solutions of CaCl2 and MgCl2 by chronopotentiometry, the apparent fraction of the conductive membrane surface in a solution of NaCl is calculated based on the experimental data on the potentiometric transport numbers of counterions in the membrane. The conditions for the synthesis of polyaniline on the surface of an heterogeneous MK-40 membrane which result in the preparation of samples with selectivity to singly charged ions are found out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. M. Yaqub, M. N. Nguyen, and W. Lee, Sci. Total Environ. 844, 157081 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. N. Mir and Y. Bicer, J. Environ. Manage. 289, 112496 (2021).

    Article  CAS  PubMed  Google Scholar 

  3. A. S. Stillwell and M. E. Webber, Water 8, 601 (2016).

    Article  Google Scholar 

  4. S. Al-Amshawee, M. Y. B. M. Yunus, A. A. M. Azoddein, D. G. Hassell, I. H. Dakhil, and H. A. Hasan, Chem. Eng. J. 380, 122231 (2020).

    Article  CAS  Google Scholar 

  5. E. O. Ezugbe and S. Rathilal, Membranes 10, 89 (2020).

    Article  CAS  Google Scholar 

  6. Y. Oren, E. Korngold, N. Daltrophe, R. Messalem, Y. Volkman, L. Aronov, M. Weismann, N. Bouriakov, P. Glueckstern, and J. Gilrona, Desalination 261, 321 (2010).

    Article  CAS  Google Scholar 

  7. Y. Zhang, K. Ghyselbrecht, R. Vanherpe, B. Meesschaert, L. Pinoy, and B. Van der Bruggen, J. Environ. Manage. 107, 28 (2012).

    CAS  PubMed  Google Scholar 

  8. A. Subramani and J. G. Jacangelo, Sep. Purif. Technol. 122, 472 (2014).

    Article  CAS  Google Scholar 

  9. C. Jiang, Y. Wang, Z. Zhang, and T. Xu, J. Membr. Sci. 450, 323 (2014).

    Article  CAS  Google Scholar 

  10. L. Ge, B. Wu, D. Yu, A. N. Mondal, L. Hou, N. U. Afsar, Q. Li, T. Xu, J. Miao, and T. Xu, Chin. J. Chem. Eng. 25, 1606 (2017).

    Article  Google Scholar 

  11. T. Sata, J. Polym. Sci. Polym. Chem. Ed. 16, 1063 (1978).

  12. J. Ying, Y. Lin, Y. Zhang, Y. Jin, H. Matsuyama, and J. Yu, Chem. Eng. J. 446, 137076 (2022).

    Article  CAS  Google Scholar 

  13. J. Pan, L. Zhao, X. Yu, J. Dong, L. Liu, X. Zhao, and L. Liu, Chin. Chem. Lett. 33, 2757 (2022).

    Article  CAS  Google Scholar 

  14. X. Pang, Y. Tao, Y. Xu, J. Pan, J. Shen, and C. Gao, J. Membr. Sci. 595, 117544 (2020).

    Article  CAS  Google Scholar 

  15. M. Vaselbehagh, H. Karkhanechi, R. Takagi, and H. Matsuyama, J. Membr. Sci. 490, 301 (2015).

    Article  CAS  Google Scholar 

  16. X. Pang, X. Yu, Y. He, S. Dong, X. Zhao, J. Pan, Zh. Runnan, and Liu L, Sep. Purif. Technol. 270, 118768 (2021).

    Article  CAS  Google Scholar 

  17. V. Compana, E. Riande, F. J. Fernandez-Carretero, N. P. Berezina, and A. A.-R. Sytcheva, J. Membr. Sci. 318, 255 (2008).

    Article  Google Scholar 

  18. M. Kumar, M. A. Khan, Z. A. A. Othman, and M. R. Siddiqui, Desalination 325, 95 (2013).

    Article  CAS  Google Scholar 

  19. H. Farrokhzad, S. Darvishmanesh, G. Genduso, T. Van Gerven, and B. Van der Bruggen, Electrochim. Acta 158, 64 (2015).

    Article  CAS  Google Scholar 

  20. T. Luo, S. Abdu, and M. Wessling, J. Membr. Sci. 555, 429 (2018).

    Article  CAS  Google Scholar 

  21. E. Stránská, Desalin. Water Treat. 56, 3220 (2015).

    Google Scholar 

  22. N. A. Kononenko, O. A. Demina, N. V. Loza, S. V. Dolgopolov, and S. V. Timofeev, Rus. J. Electrochem. 57, 505 (2021).

    Article  CAS  Google Scholar 

  23. K. S. Barros, M. C. Martí-Calatayud, T. Scarazzato, A. M. Bernardes, D. C. R. Espinosa, and V. Pérez-Herranz, Adv. Colloid. Interface 293, 102439 (2021).

    CAS  Google Scholar 

  24. J.-H. Choi and S.-H. Moon, J. Membr. Sci. 191, 255 (2001).

    Article  Google Scholar 

  25. S. A. Mareev, V. S. Nichka, D. Y. Butylskii, M. K. Urtenov, N. D. Pismenskaya, P. Y. Apel, and V. V. Nikonenko, J. Phys. Chem. 120, 13113.

  26. V. I. Zabolotskii, N. P. Berezina, V. V. Nikonenko, V. A. Shaposhnik, and A. A. Tskhai, Membrany 4, 6 (1999).

    Google Scholar 

  27. M. Andreeva, N. Loza, N. Kutenko, and N. Kononenko, J. Solid State Electrochem. 24, 101 (2020).

    Article  CAS  Google Scholar 

  28. N. V. Loza, I. V. Falina, N. A. Kononenko, and D. S. Kudashova, Synth. Met. 261, 116292 (2020).

    Article  Google Scholar 

  29. R. A. Robinson and R. H. Stocks, Electrolyte Solutions (Dover Publications, New York, 2002).

    Google Scholar 

  30. M. C. Martí-Calatayud, M. García-Gabaldón, and V. Pérez-Herranz, J. Membr. Sci. 443, 181 (2013).

    Article  Google Scholar 

  31. N. P. Berezina, A. A. Kubaisy, S. V. Timofeev, and L. Karpenko, J. Solid State Electrochem. 11, 378 (2007).

    Article  CAS  Google Scholar 

  32. I. Rubinstein and B. Zaltzman, Phys. Rev. Lett. 114, 114502 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. I. Rubinstein and B. Zaltzman, Phys. Rev. Fluids, 093702 (2017).

  34. V. V. Nikonenko, S. A. Mareev, N. D. Pis’menskaya, A. V. Kovalenko, M. K. Urtenov, A. M. Uzdenova, and G. Pourcelly, Rus. J. Electrochem, 53, 1122 (2017).

    Article  CAS  Google Scholar 

  35. S. Zyryanova, S. Mareev, V. Gil, E. Korzhova, N. Pismenskaya, V. Sarapulova, O. Rybalkina, E. Boyko, Ch. Larchet, D. Lasaad, and V. Nikonenko, Int. J. Mol. Sci. 21, 973 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. M. A. Andreeva, V. V. Gil, N. D. Pismenskaya, V. V. Nikonenko, L. Dammak, C. Larchet, D. Grande, and N. A. Kononenko, J. Membr. Sci. 540, 183 (2017).

  37. A. Campione, L. Gurreri, M. Ciofalo, G. Micale, A. Tamburini, and A. Cipollina, Desalination 434, 121 (2018).

    Article  CAS  Google Scholar 

  38. N. D. Pismenskaya, V. V. Nikonenko, E. I. Belova, G. Yu. Lopatkova, Ph. Sistat, G. Pourcelly, and K. Larshe, Rus. J. Electrochem. 43, 307 (2007).

    Article  CAS  Google Scholar 

  39. X. Pang, Y. Tao, Y. Xu, J. Pan, J. Shen, and C. Gao, J. Membr. Sci. 595, 117544 (2020).

    Article  CAS  Google Scholar 

  40. V. I. Zabolotskii, N. V. Shel’deshov, and N. P. Gnusin, Russ. Chem. Rev. 57, 801 (1988).

    Article  Google Scholar 

  41. Yu. I. Kharkats // Elektrokhimiya. 1985. V. 21. P. 974.

  42. L. G. Sillen and A. E. Martell, Stability Constants of Metal-Ion Complexes (Chemical Society, London, 1964).

    Google Scholar 

  43. O. A. Demina, I. V. Falina, N. A. Kononenko, and V. I. Zabolotskiy, Colloid J. 82, 108 (2020).

Download references

Funding

The study was supported by Russian Science Foundation, grant no. 22-29-00938, https://rscf.ru/project/22-29-00938/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Brovkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brovkina, M.A., Kutenko, N.A. & Loza, N.V. Electrochemical Behavior of Polyaniline-Modified Cation-Exchange Heterogeneous Membranes in Solutions Containing Mono- and Bivalent Cations. Membr. Membr. Technol. 5, 178–192 (2023). https://doi.org/10.1134/S2517751623030034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623030034

Keywords:

Navigation