Skip to main content
Log in

Effect of Low-Temperature Plasma on the Structure of Surface Layers and Gas-Separation Properties of Poly(Vinyltrimethylsilane) Membranes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

New results of studying the one-sided surface modification of polymer films and flat-sheet composite membranes based on poly(vinyltrimethylsilane) using low-temperature plasma are presented. Treatment is carried out by direct current discharge at a cathode and anode, air is used as a working medium, the exposure time is from 10 to 60 s, and the working pressure in a chamber is 15–20 Pa. The structure of the surface layers is analyzed by XPS, AFM, and SEM, and the contact properties of the surface are studied. For cathode-treated PVTMS films the effective permeability coefficients for O2, N2, СН4, СО2, Не, and Н2, as well as the effective gas diffusion coefficients, are measured experimentally and the effective gas solubility coefficients are calculated. The permeability coefficients of the studied gases for cathode- and anode-modified composite membranes with a selective PVTMS layer are determined. It is shown that the choice of electrode significantly affects not only the chemical structure of surface and near-surface PVTMS layers but also the gas-transport parameters of the modified samples. It is found that, in the case of cathode-modified homogeneous films, the values of permeability, diffusion, and solubility coefficients of gases are higher while the values of selectivity are lower compared with the anode-modified films. At the same time, the treatment of PVTMS films at the cathode for 30 s makes it possible to increase O2/N2 selectivity by more than two times relative to the initial values. The results of modification of the composite membranes differ from those attained for the homogeneous films, and, what is more, for the composite membrane treated at the cathode the O2/N2 selectivity is higher by a factor of 2.5 than the initial value. The potential of using surface modification of polymer films and membranes by low-temperature plasma to improve their gas-separation properties is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Borisov, V. S. Khotimsky, A. I. Rebrov, S. V. Ryko, D. I. Slovetsky, and Yu. M. Pashunin, J. Membr. Sci. 125, 319 (1997).

    Article  CAS  Google Scholar 

  2. A. V. Volkov, S. E. Tsarkov, A. B. Gilman, V. S. Khotimsky, V. I. Roldughin, and V. V. Volkov, Adv. Colloid Interface Sci. 222, 716 (2015).

    Article  CAS  Google Scholar 

  3. A. P. Kharitonov, R. Taege, G. Ferrier, V. V. Teplyakov, D. A. Syrtsova, and G.-H. Koops, J. Fluorine Chem. 126, 251 (2005).

    Article  CAS  Google Scholar 

  4. T. S. Demina, M. G. Drozdov, M. Y. Yablokov, A. I. Gaida, and A. B. Gilman, Plasma Proc. Polym. 12, 710 (2015).

    Article  CAS  Google Scholar 

  5. C. M. Cha, T. M. Ko, and H. Hiraoka, Surf. Sci. Rep. 24, 1 (1996).

    Article  Google Scholar 

  6. K. Zarshenas, A. Raisi, and A. Aroujalian, RSC Adv. 5, 19760 (2015).

  7. X. Lin, J. Chen, and J. Xu, J. Membr. Sci. 90, 81 (1994).

    Article  CAS  Google Scholar 

  8. I. Gancarz, G. Pozniak, and M. Bryjak, Eur. Polym. J. 35, 1419 (1999).

    Article  CAS  Google Scholar 

  9. H. Kumazawa and M. Yoshida, J. Appl. Polym. Sci. 78, 1845 (2000).

    Article  CAS  Google Scholar 

  10. H. Yuan, B. Yu, H. Cong, Q. Peng, R. Yang, Sh. Yang, Zh. Yang, Y. Luo, T. Xu, and H. Zhang, Rev. Adv. Mater. Sci. 3, 207 (2016).

    Google Scholar 

  11. J. Wang, X. Chen, R. Reis, Zh. Chen, N. Milne, B. Winther-Jensen, L. Kong, and L. F. Dumee, Membranes 8, 56 (2018).

    Article  CAS  PubMed Central  Google Scholar 

  12. L. Shao, J. Samseth, and M.-B. Hagg, Membr. Plasma Process. Polym. 4, 823 (2007).

    Article  CAS  Google Scholar 

  13. M. Nakata and H. Kumazawa, J. Appl. Polym. Sci. 101, 383 (2006).

    Article  CAS  Google Scholar 

  14. T. Teramae and H. Kumazawa, J. Appl. Polym. Sci. 104, 3236 (2007).

    Article  CAS  Google Scholar 

  15. P. W. Kramer, Y.-S. Yeh, and H. Yasuda, J. Membr. Sci. 46, 1 (1989).

    Article  CAS  Google Scholar 

  16. H. Matsuyama, M. Teramoto, and K. Hirai, J. Membr. Sci. 99, 139 (1995).

    Article  CAS  Google Scholar 

  17. K. Fatyeyeva, A. Dahi, C. Chappey, D. Langevin, J.‑M. Valleton, F. Poncin-Epaillard, and S. Marais, RSC Adv. 4, 31036 (2014).

  18. A. V. Zinoviev, M. S. Piskarev, E. A. Skryleva, B. R. Senatulin, A. K. Gatin, A. B. Gilman, D. A. Syrtsova, V. V. Teplyakov, and A. A. Kuznetsov, High Energy Chem. 55, 407 (2021).

    Article  CAS  Google Scholar 

  19. T. S. Demina, M. G. Drozdova, M. Y. Yablokov, A. I. Gaidar, and A. B. Gilman, Plasma Proc. Polym. 12, 710 (2015).

    Article  CAS  Google Scholar 

  20. S. Wu, Polymer Interface and Adhesion (Dekker, New York, 1982).

    Google Scholar 

  21. E. A. Efmova, D. A. Syrtsova, and V. V. Teplyakov, Sep. Purif. Technol. 179, 467 (2017).

    Article  Google Scholar 

  22. I. N. Beckman and D. A. Syrtsova, M. G. Shalygin, P. Kandasamy, and V. V. Teplyakov, J. Membr. Sci. 601, 117737 (2020).

    Article  CAS  Google Scholar 

  23. D. A. Syrtsova, M. S. Piskarev, A. V. Zinoviev, A. A. Kuznetsov, E. A. Skryleva, A. B. Gilman, and V. V. Teplyakov, J. Appl. Polym. Sci. 139, 1 (2022).

    Article  Google Scholar 

  24. I. N. Beckman and V. V. Teplyakov, Adv. Colloid Interface Sci. 222, 70 (2015).

    Article  CAS  Google Scholar 

  25. Z. Wang, Y. Luo, F. Zheng, N. Zhang, C. Yin, J. Li, C. He, X. Peng, Z. Huang, and P. Fang, Surf. Interf. Anal. 50, 819 (2018).

    Article  CAS  Google Scholar 

  26. S. Sridhar, R. S. Veerapur, M. B. Patil, K. B. Gudasi, and T. M. Aminabhavi, J. Appl. Polym. Sci. 106, 1585 (2007).

    Article  CAS  Google Scholar 

  27. M. D. Donohue, B. S. Minhas, and S. Y. Lee, J. Membr. Sci. 42, 197 (1989).

    Article  CAS  Google Scholar 

  28. C. K. Yeom, S. H. Lee, and J. M. Lee, J. Appl. Polymer Science 78, 179 (2000).

    Article  CAS  Google Scholar 

  29. F. Falbo, F. Tasselli, A. Brunetti, E. Drioli, and G. Barbieri, J. Chem. Eng. 31, 4 (2014).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to A.A. Kozlova and D.V. Miroshnichenko for their help in obtaining initial samples. XPS studies were performed using equipment of the Research Center for Collective Use Materials Science and Metallurgy under support of the Ministry of Science and Higher Education of the Russian Federation (no. 075-15-2021-696).

Funding

This work was supported by the Russian Foundation for Basic Research (no. 18-58-45003). The surface study of the samples was supported in part by the Ministry of Science and Higher Education of the Russian Federation (theme no. FFSM-2021-0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Teplyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syrtsova, D.A., Zinoviev, A.V., Piskarev, M.S. et al. Effect of Low-Temperature Plasma on the Structure of Surface Layers and Gas-Separation Properties of Poly(Vinyltrimethylsilane) Membranes. Membr. Membr. Technol. 5, 98–106 (2023). https://doi.org/10.1134/S2517751623020063

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751623020063

Keywords:

Navigation