Skip to main content
Log in

Enhancement of Gas Separation Properties of Polyvinyltrimethylsilane by Low-Temperature Plasma Treatment for Carbon Dioxide Utilization in “Green Chemistry” Processes

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

The paper presents the results of applying the membrane gas separation technique to the recovery of CO2 and its subsequent utilization by converting into ammonium carbamate. One-sided surface modification of homogeneous polyvinyltrimethylsilane (PVTMS) films by treating in low-temperature air plasma for 30 and 60 s has been carried out. The transport and gas separation properties of the modified samples has been investigated, and values for the permeability and diffusion coefficients of CO2, N2, and CH4 have been experimentally obtained. On the basis of the experimental data, the effective coefficients of gas solubility in the modified film have been determined. It has been found that by modification within 30 s, the CO2/N2 and CO2/CH4 separation factors are increased by two and three times, respectively, relative to the initial values. To assess the possibility of using the new membranes, mathematical modeling of a single-step membrane process for the separation of biogas components under steady-state and non-steady-state has been carried out. It has been shown that the proposed membrane modification method makes it possible to significantly increase the performance of the membrane unit: for example, the recovery of CH4 under steady-state conditions is increased from 70 to 86%, and the CO2 content in the permeate increases from 68 to 82 mol %. The reaction of ammonium carbamate production from CO2 and ammonia in recycled vegetable oil as a solvent has been successfully conducted using the calculated characteristics of the membrane module based on modified PVTMS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. F. Barzagli, F. Mani, and M. Peruzzini, J. CO2 Util. 13, 81 (2016).

  2. HoSeok Park, Young Mee Jung, Jong Kyun You, Won Hi Hong, and Jong-Nam Kim, J. Phys. Chem. A 112, 6558 (2008).

  3. L. Shi, S. H. Fatemi, R. W. Sidwell, and P. H. Patterson, J. Neurosci. 23, 297 (2003).

    Article  Google Scholar 

  4. R. M. Cuéllar-Franca and A. Azapagic, J. CO2 Util. 9, 82 (2015).

  5. . Alper and O. Y. Orhan, Petroleum 3, 109 (2017)

    Article  Google Scholar 

  6. F. Barzagli, F. Mani, and M. Peruzzini, Green Chem. 13, 1267 (2011).

    Article  CAS  Google Scholar 

  7. V. L. Saprykin, Khim. Tekhnol. 3, 20 (1992).

    Google Scholar 

  8. J. Kishore Doshi, US Patent 4783203 (1988).

  9. V. V. Teplyakov, G. I. Pisarev, M. I. Magsumov, M. V. Tsodikov, W. Zhu, and F. Kapteijn, Catalysis Today 118, 7 (2006).

    Article  CAS  Google Scholar 

  10. Production, Transport, and Storage, Ed. by Gupta R. B. (Taylor & Francis Group LLC, 2009).

    Google Scholar 

  11. R. S. Murali, T. Sankarshana, S. Sridhar, and A. P. Kharitonov, J. Polym. Mater. 29, 317 (2012).

    Google Scholar 

  12. D. M. Amirkhanov, A. A. Kotenko, and M. N. Tul’skii, Fibre Chem. 30, 67 (1998).

    Article  Google Scholar 

  13. J. D. Le Roux, D. R. Paul, J. Kampa, and R. J. Lagow, J. Membr. Sci. 94, 121 (1994).

    Article  CAS  Google Scholar 

  14. A. P. Kharitonov, Yu. L. Moskvin, L. N. Kharitonova, A. A. Kotenko, and M. N. Tul’skii, Kinet. Katal. 35, 858 (1994).

    CAS  Google Scholar 

  15. J. D. Le Roux, V. V. Teplyakov, and D. R. Paul, J. Membr. Sci. 90, 55 (1994).

    Article  CAS  Google Scholar 

  16. Cheol Hun Park, JaeHun Lee, Jung Pyo Jung, Wooseop Lee, DuYeol Ryu, and Jong Hak Kim, Angew. Chem. 58, 1143 (2019).

    Article  Google Scholar 

  17. Encyclopedia of Low Temperature Plasma, Introductory Volume IV, Ed. by Fortov V. E. (Nauka, Moscow, 2000) [in Russian].

    Google Scholar 

  18. A. B. Gil’man, V. V. Volkov, A. I. Drachev, and Ya. A. Selinskaya, Khim. Vys. Energ. 34, 320 (2000).

    Google Scholar 

  19. T. S. Demina, M. G. Drozdova, M. Y. Yablokov, A. I. Gaidar, and A. B. Gilman, Plasma Proc. Polym. 12, 710 (2015).

    Article  CAS  Google Scholar 

  20. A. Ovcharova, V. Vasilevsky, I. Borisov, S. Bazhenov, A. Volkov, A. Bildyukevich, and V. Volkov, Sep. Purif. Technol. 183, 172163 (2017).

    Article  Google Scholar 

  21. E. A. Efmova, D. A. Syrtsova, and V. V. Teplyakov, Sep. Purif. Technol. 31, 467 (2017).

    Article  Google Scholar 

  22. V. N. Chernik, A. I. Akishin, A. A. Paskhalov, A. S. Patrakeev, G. G. Bondarenko, and A. I. Gaidar, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 4, 59 (2010).

    Article  Google Scholar 

  23. I. N. Beckman, D. Syrtsova, M. G. Shalygin, P. Kandasami, and V. V. Teplyakov, J. Membr. Sci. 601, 117737 (2020).

    Article  CAS  Google Scholar 

  24. L. Wang, J. P. Corriou, C. Castel, and E. Favre, J. Membr. Sci. 383, 170 (2011).

    Article  CAS  Google Scholar 

  25. M. M. Trubyanov, S. Y. Kirillov, A. V. Vorotyntsev, T. S. Sazanova, A. A. Atlaskin, A. N. Petukhov, Yu. P. Kirillov, and I. V. Vorotyntsev, J. Membr. Sci. 587, 117173 (2019).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the staff of the Laboratory of Polymeric Membranes at the Topchiev Institute of Petrochemical Synthesis for kindly providing the data on the contact angle.

Funding

This work was supported of the Russian Foundation for Basic Research, project no. 18-58-45003, and the Department of Science and Technology of the Government of India, grant no. DST INT/RUS/RFBR/P-344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Syrtsova.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Syrtsova, D.A., Shalygin, M.G., Teplyakov, V.V. et al. Enhancement of Gas Separation Properties of Polyvinyltrimethylsilane by Low-Temperature Plasma Treatment for Carbon Dioxide Utilization in “Green Chemistry” Processes. Membr. Membr. Technol. 3, 43–51 (2021). https://doi.org/10.1134/S251775162101008X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S251775162101008X

Keywords:

Navigation