Skip to main content
Log in

Influence of Protonation–Deprotonation Reactions on the Diffusion of Ammonium Chloride through Anion-Exchange Membrane

  • Published:
Membranes and Membrane Technologies Aims and scope Submit manuscript

Abstract

Electrodialytic concentration of ammonium-containing liquid products of biochemical processing of municipal, industrial, and livestock wastewater is a promising method for obtaining cheap liquid fertilizers for agriculture. At the same time, it is known that electrodialysis of NH4Cl solutions fails to achieve the same high brine concentrations as in the case of other chlorides, for example, KCl. We show that the reason is high diffusion permeability of anion-exchange membranes (AEMs) to NH4Cl, which is due to the protonation–deprotonation reactions of ammonium coions during their transfer from an external solution to an internal AEM solution and vice versa. For the first time, a mathematical model of NH4Cl diffusion through AEM was proposed with allowance for these reactions. The experimental values of the diffusion permeability of an anion-exchange membrane AMX and a cation-exchange membrane CMX in NH4Cl and KCl solutions have been compared. between The results of calculating the diffusion permeability of the membrane AMX in NH4Cl solutions are in qualitative agreement with the experiment data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. S. Giddey, S. P. S. Badwal, and A. Kulkarni, Int. J. Hydrogen Energy 38, 14576 (2013).

    Article  CAS  Google Scholar 

  2. R. R. Karri, J. N. Sahu, and V. Chimmiri, J. Mol. Liq. 261, 21 (2018).

    Article  CAS  Google Scholar 

  3. C. Eskicioglu, G. Galvagno, and C. Cimon, Bioresour. Technol. 268, 797 (2018).

    Article  CAS  Google Scholar 

  4. S. Melnikov, S. Loza, M. Sharafan, and V. Zabolotskiy, Sep. Purif. Technol. 157, 179 (2016).

    Article  CAS  Google Scholar 

  5. X. Wang, X. Zhang, Y. Wang, Y. Du, H. Feng, T. Xu, J. Membr. Sci. 490, 65 (2015).

    Article  CAS  Google Scholar 

  6. A. J. Ward and K. Arola, E. Thompson Brewster, C. M. Mehta, and D. J. Batstone, Water Res. 135, 57 (2018).

    Article  CAS  Google Scholar 

  7. X. Vecino, M. Reig, O. Gibert, C. Valderrama, and J. L. Cortina, Chemosphere 245, 125606 (2020).

    Article  CAS  Google Scholar 

  8. Filtr. Ind. Anal. 2016, 4 (2016).

  9. J. Monetti, P. Ledezma, B. Virdis, and S. Freguia, ACS Omega 4, 2152 (2019).

    Article  CAS  Google Scholar 

  10. P. Kuntke and T. H. J. A. Sleutels, M. Rodriguez Arredondo, S. Georg, S. G. Barbosa, A. Ter Heijne, H. V. M. Hamelers, and C. J. N. Buisman, Appl. Microbiol. Biotechnol. 102, 3865 (2018).

    Article  CAS  Google Scholar 

  11. L. Shi, S. Xie, Z. Hu, G. Wu, L. Morrison, P. Croot, H. Hu, and X. Zhan, J. Membr. Sci. 573, 560 (2019).

    Article  CAS  Google Scholar 

  12. T. Luo, S. Abdu, and M. Wessling, J. Membr. Sci. 555, 429 (2018).

    Article  CAS  Google Scholar 

  13. O. A. Demina, N. A. Kononenko, I. V. Falina, and A. V. Demin, Colloid J. 79, 317 (2017).

    Article  CAS  Google Scholar 

  14. O. M. Aminov, V. A. Shaposhnik, A. A. Guba, and A. E. Kutsenko, Sorp. Khromatogr. Protsessy 13, 816 (2013).

    CAS  Google Scholar 

  15. O. A. Kozaderova, S. I. Niftaliev, and K. B. Kim, Russ. J. Electrochem. 54, 363 (2018).

    Article  CAS  Google Scholar 

  16. O. A. Kozaderova, K. B. Kim, and S. I. Niftaliev, J. Membr. Sci. 604, 118081 (2020).

    Article  CAS  Google Scholar 

  17. C. Larchet, B. Auclair, and V. Nikonenko, Electrochim. Acta 49, 1711 (2004).

    Article  CAS  Google Scholar 

  18. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, Adv. Colloid Interface Sci. 139, 3 (2008).

    Article  CAS  Google Scholar 

  19. Y. Ji, H. Luo, M. Geoffrey, and G. M. Geise, J. Membr. Sci. 563, 492 (2018).

    Article  CAS  Google Scholar 

  20. V. Sarapulova, I. Shkorkina, S. Mareev, N. Pismenskaya, N. Kononenko, Ch. Larchet, L. Dammak, and V. Nikonenko, Membranes 9, 84 (2019).

    Article  CAS  Google Scholar 

  21. V. I. Zabolotsky and V. V. Nikonenko, J. Membr. Sci. 79, 181 (1993).

    Article  CAS  Google Scholar 

  22. D. R. Lide, CRC Handbook of Chemistry and Physics (CRC Press, N.Y., 1995).

    Google Scholar 

  23. N. D. Pis’menskaya, E. E. Nevakshenova, and V. V. Nikonenko, Petr. Chem. 58, 465 (2018).

    Article  Google Scholar 

  24. V. I. Zabolotskii and V. V. Nikonenko, Transport of Ions in Membranes (Nauka, Moscow, 1996) [in Russian].

    Google Scholar 

  25. A. N. Filippov, N. A. Kononenko, and O. A. Demina, Colloid J. 79, 556 (2017).

    Article  CAS  Google Scholar 

  26. V. I. Vasil’eva, V. A. Shaposhnik, I. A. Zemlyanukhina, and O. V. Grigorchuk, Russ. J. Phys. Chem. A 77, 1017 (2003).

    Google Scholar 

  27. V. Vasil’eva, E. Goleva, N. Pismenskaya, A. Kozmai, and V. Nikonenko, Sep. Purif. Technol. 210, 48 (2019).

    Article  Google Scholar 

  28. K. Ueno, T. Doi, B. Nanzai, and M. Igawa, J. Membr. Sci. 537, 344 (2017).

    Article  CAS  Google Scholar 

  29. F. Helfferich, Ion Exchange (McGraw-Hill, London, N.Y., 1962).

    Google Scholar 

  30. L. Franck-Lacaze, P. Sistat, and P. Huguet, J. Membr. Sci. 326 (2), 650 (2009).

    Article  CAS  Google Scholar 

  31. J. Kamcev, D. R. Paul, G. S. Manning, and B. D. Freeman, ACS Appl. Mater. Interfaces 9, 4044 (2017).

    Article  CAS  Google Scholar 

  32. A. G. Kislyi, D. Yu. Butylskii, S. A. Mareev, and V. V. Nikonenko, Membr. Membr. Technol. 3, 131 (2021).

    Article  CAS  Google Scholar 

  33. V. Nikonenko, K. Lebedev, J. A. Manzanares, and G. Pourcelly, Electrochim. Acta 48, 3639 (2003).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Kuban Science Foundation, project no. MFI-20.1/128 (agreement no. MFI-20.1-32/20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Pismenskaya.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnikova, E.D., Tsygurina, K.A., Pismenskaya, N.D. et al. Influence of Protonation–Deprotonation Reactions on the Diffusion of Ammonium Chloride through Anion-Exchange Membrane. Membr. Membr. Technol. 3, 324–333 (2021). https://doi.org/10.1134/S2517751621050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2517751621050085

Keywords:

Navigation