Skip to main content
Log in

Solid Lipid Nanoparticles for the Nucleic Acid Encapsulation

  • RESEARCH ARTICLE
  • Published:
Reviews and Advances in Chemistry Aims and scope Submit manuscript

Abstract

We report the formation of lipid nanoparticles (LNPs) capable to encapsulate up to 70% of added DNA molecules and stable within 2.5 weeks. The novelty of the suggested approach is in the components used for nanoparticle formation. The standard components of LNPs are amine, phospholipid, cholesterol and lipid conjugated with poly(ethyleneglycol) (PEGylated). We suggested to combine two components – cholesterol and PEGylated lipid. Thus, studied LNPs contained three components: PEGylated cholesterol, oleylamine and three types of phosphocholine differed in alkyl chain length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Scheme 1.
Scheme 2.
Fig. 5.
Scheme 3.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Whitehead, K., Langer, R., and Anderson, D., Nat. Rev. Drug Discovery, 2009, vol. 8, p. 129. https://doi.org/10.1038/nrd2742

    Article  CAS  PubMed  Google Scholar 

  2. Husseini, G.A., and Pitt, W.G., Adv. Drug Delivery Rev., 2008, vol. 60, no. 10, p. 1137. https://doi.org/10.1016/j.addr.2008.03.008

    Article  CAS  Google Scholar 

  3. Lu, Y., Zhong, L., Jiang, Z., Pan, H., Zhang, Y., Zhu, G., Bai, L., Tong, R., Shi, J., and Duan, X., Nanoscale Res. Lett., 2019, vol. 14, no. 1, p. 193. https://doi.org/10.1186/s11671-019-2985-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, J., Wang, Y., Wang, Z., Wang, F., He, J., Yang, X., Xie, W., Liu, Y., and Zhang, Y., Drug Delivery, 2019, vol. 26, no. 1, p. 168. https://doi.org/10.1080/10717544.2019.1568622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clarke, D., Idris, A., and McMillan, N.A.J., PLoS One, 2019, vol. 14, no. 2, p. e0211954. https://doi.org/10.1371/journal.pone.0211954

  6. Ashley, C.E., Carnes, E.C., Epler, K.E., Padilla, D.P., Phillips, G.K., Castillo, R.E., Wilkinson, D.C., Wilkinson, B.S., Burgard, C.A., Kalinich, R.M., Townson, J.L., Chackerian, B., Willman, C.L., Peabody, D.S., Wharton, W., and Brinker, C.J., ACS Nano, 2012, vol. 6, no. 3, p. 2174. https://doi.org/10.1021/nn204102q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Draz, M.S., Fang, B.A., Zhang, P., Hu, Z., Gu, S., Weng, K.C., Gray, J.W., and Chen, F.F., Theranostics, 2014, vol. 4, no. 9, p. 872. https://doi.org/10.7150/thno.9404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Puri, A., Loomis, K., Smith, B., Lee, J.-H., Yavlovich, A., Heldman, E., and Blumenthal, R., Crit. Rev. Ther. Drug Carrier Syst., 2009, vol. 26, no. 6, p. 523. https://doi.org/10.1615/critrevtherdrugcarriersyst.v26.i6.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Martins, S., Sarmento, B., Ferreira, D.C., and Souto, E.B., Int. J. Nanomed., 2007, vol. 2, no. 4, p. 595.

    CAS  Google Scholar 

  10. Whitehead, K.A., Dorkin, J.R., Vegas, A.J., Chang, P.H., Veiseh, O., Matthews, J., Fenton, O.S., Zhang, Y., Olejnik, K.T., Yesilyurt, V., Chen, D., Barros, S., Klebanov, B., Novobrantseva, T., Langer, R., and Anderson, D.G., Nat. Commun., 2014, vol. 5, p. 4277. https://doi.org/10.1038/ncomms5277

    Article  CAS  PubMed  Google Scholar 

  11. Akinc, A., Zumbuehl, A., Goldberg, M., Leshchiner, E.S., Busini, V., Hossain, N., Bacallado, S.A., Nguyen, D.N., Fuller, J., Alvarez, R., Borodovsky, A., Borland, T., Constien, R., de Fougerolles, A., Dorkin, J.R., Jayaprakash, K.N., Jayaraman, M., John, M., Koteliansky, V., Manoharan, M., Nechev, L., Qin, J., Racie, T., Raitcheva, D., Rajeev, K.G., Sah, D.W.Y., Soutschek, J., Toudjarska, I., Vornlocher, H.-P., Zimmermann, T.S., Langer, R., and Anderson, D.G., Nat. Biotechnol., 2008, vol. 26, p. 561. https://doi.org/10.1038/nbt1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cullis, P.R., and Hope, M.J., Mol. Ther., 2017, vol. 25, no. 7, p. 1467. https://doi.org/10.1016/j.ymthe.2017.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Müller R.H., Mäder K., and Gohla S., Eur. J. Pharm. Biopharm., 2000, vol. 50, no. 1, p. 161. https://doi.org/10.1016/s0939-6411(00)00087-4

    Article  PubMed  Google Scholar 

  14. Kulkarni, J.A., Witzigmann, D., Chen, S., Cullis, P.R., and van der Meel, R., Acc. Chem. Res., 2019, vol. 52, no. 9, p. 2435. https://doi.org/10.1021/acs.accounts.9b00368

    Article  CAS  PubMed  Google Scholar 

  15. Zatsepin, T.S., Kotelevtsev, Yu.V., and Koteliansky, V., Int. J. Nanomed., 2016, vol. 11, p. 3077. https://doi.org/10.2147/IJN.S106625

    Article  CAS  Google Scholar 

  16. Kulkarni, J.A., Witzigmann, D., Leung, J., Tama, Y.Y.C., and Cullis, P.R., Nanoscale, 2019, vol. 11, p. 21733. https://doi.org/10.1039/C9NR09347H

    Article  CAS  PubMed  Google Scholar 

  17. Ramezanpour, M., Schmidt, M.L., Bodnariuc, I., Kulkarni, J.A., Leung, S.S.W., Cullis, P.R., Thewalt, J.L., and Tieleman, D.P., Nanoscale, 2019, vol. 11, p. 14141. https://doi.org/10.1039/C9NR02297J

    Article  CAS  PubMed  Google Scholar 

  18. Liu, K., Zheng, L., Ma, C., Göstl, R., and Herrmann, A., Chem. Soc. Rev., 2017, vol. 46, p. 5147. https://doi.org/10.1039/c7cs00165g

    Article  CAS  PubMed  Google Scholar 

  19. Cheng, X. and Lee, R.J., Adv. Drug Delivery Rev., 2016, vol. 1, no. 99, p. 129. https://doi.org/10.1016/j.addr.2016.01.022

    Article  CAS  Google Scholar 

  20. Pozzi, D., Marchini, C., Cardarelli, F., Amenitsch, H., Garulli, C., Bifone, A., and Caracciolo, G., Biochim. Biophys. Acta, Biomembr., 2012, vol. 1818, no. 9, p. 2335. https://doi.org/10.1016/j.bbamem.2012.05.017

    Article  CAS  Google Scholar 

  21. Tenchov, B.G., MacDonald, R.C., and Siegel, D.P., Biophys. J., 2006, vol. 91, no. 7, p. 2508. https://doi.org/10.1529/biophysj.106.083766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yuda, T., Maruyama, K., and Iwatsuru, M., Biol. Pharm. Bull., 1996, vol. 19, no. 10, p. 1347. https://doi.org/10.1248/bpb.19.1347

    Article  CAS  PubMed  Google Scholar 

  23. Heiati, H., Tawashi, R., and Phillips, N.C., Int. J. Pharm., 1998, vol. 174, nos. 1–2, p. 71. https://doi.org/10.1016/S0378-5173(98)00236-1

    Article  CAS  Google Scholar 

  24. Jokerst, J.V., Lobovkina, T., Zare, R.N., and Gambhir, S.S., Nanomedicine, 2011, vol. 6, no. 4, p. 715. https://doi.org/10.2217/nnm.11.19

    Article  CAS  PubMed  Google Scholar 

  25. Kesharwani, P., Gajbhiye, V., and Jain, N.K., Biomaterials, 2012, vol. 33, no. 29, p. 7138. https://doi.org/10.1016/j.biomaterials.2012.06.068

    Article  CAS  PubMed  Google Scholar 

  26. Liu, J., Rybakina, E.G., Korneva, E.A., and Noda, M., J. Pharmacol. Sci., 2018, vol. 138, no. 2, p. 123. https://doi.org/10.1016/j.jphs.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  27. Almeida, A.J., Runge, S., and Müller, R.H., Int. J. Pharm., 1997, vol. 149, no. 2, p. 255. https://doi.org/10.1016/S0378-5173(97)04885-0

    Article  CAS  Google Scholar 

  28. Schubert, M.A. and Müller-Goymann, C.C., Eur. J. Pharm. Biopharm., 2003, vol. 55, no. 1, p. 125. https://doi.org/10.1016/S0939-6411(02)00130-3

    Article  CAS  PubMed  Google Scholar 

  29. Bunjes, H., Westesen, K., and Koch, M.H.J., Int. J. Pharm., 1996, vol. 129, nos. 1–2, p. 159. https://doi.org/10.1016/0378-5173(95)04286-5

    Article  CAS  Google Scholar 

  30. Sergeyev, V.G., Pyshkina, O.A., Lezov, A.V., Mel’nikov, A.B., Ryumtsev, E.I., Zezin, A.B., and Kabanov, V.A., Langmuir, 1999, vol. 15, no. 13, p. 4434. https://doi.org/10.1021/la981583h

    Article  CAS  Google Scholar 

  31. Sumitomo, K., Sasaki, M., and Yamaguchi, Y., Electrophoresis, 2009, vol. 30, p. 1538. https://doi.org/10.1002/elps.200800457

    Article  CAS  PubMed  Google Scholar 

  32. Carlstedt, J., Lundberg, D., Dias, R.S., and Lindman, B., Langmuir, 2012, vol. 28, no. 21, p. 7976. https://doi.org/10.1021/la300266h

    Article  CAS  PubMed  Google Scholar 

  33. Elsayed, M.M.A., and Cevc, G., Pharm. Res., 2011, vol. 28, p. 2204. https://doi.org/10.1007/s11095-011-0448-z

    Article  CAS  PubMed  Google Scholar 

  34. Heller, W., Bhatnagar, H.L., and Nakagaki, M., J. Chem. Phys., 1962, vol. 36, p. 1163. https://doi.org/10.1063/1.1732710

    Article  CAS  Google Scholar 

  35. Dias, R.S., Innerlohinger, J., Glatter, O., Miguel, M.G., and Lindman, B., J. Phys. Chem. B, 2005, vol. 109, no. 20, p. 10458. https://doi.org/10.1021/jp0444464

    Article  CAS  PubMed  Google Scholar 

  36. Zinchenko, A.A., Sergeyev, V.G., Yamabe, K., Murata, S., and Yoshikawa, K., Chem. Bio. Chem., 2004, vol. 5, no. 3, p. 360. https://doi.org/10.1002/cbic.200300797

    Article  CAS  PubMed  Google Scholar 

  37. Kabanov A.V. and Kabanov V.A., Bioconjugate Chem., 1995, vol. 6, no. 1, p. 7. https://doi.org/10.1021/bc00031a002

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Russian State Budget Topic (project 121031300084-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Zaborova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaborova, O.V., Voinova, A.D., Shmykov, B.D. et al. Solid Lipid Nanoparticles for the Nucleic Acid Encapsulation. rev. and adv. in chem. 11, 178–188 (2021). https://doi.org/10.1134/S2079978021030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978021030055

Keywords:

Navigation