Skip to main content
Log in

Commune Propriety between Reducing Agents Implicated in Synthesis of Metallic Nanoparticles

  • Published:
Review Journal of Chemistry Aims and scope Submit manuscript

Abstract

The reduction of metallic cation leads to nanoparticles as one of the most common reduced from of metals. It has been revealed great output variability of obtained nanoparticles related to the nature of the reducing agents. The classification of the agents used demonstrates that nanoparticles can be synthesized with very save methods. In this review paper, we try to explain the reducing processes depending on the agent used in the electronic transfer from the reducing agent to metallic cation. The structure was directly related to the electronic configuration of the element and the power of the adjacent molecule used as reducing agent. The intrinsic nature of the reducing agent play a crucial role to make the primary seeds of nanoparticles and burn out the charge hold by the cation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Iravani, S., Korbekandi, H., Mirmohammadi, S.V., and Zolfaghari, B., Res. Pharm. Sci., 2014, vol. 9, no. 6, p. 385.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Rivero, P.J., Goicoechea, J., Urrutia, A., and Arregui, F.J., Nanoscale Res. Lett., 2013, vol. 8, no. 1, p. 101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kavitha, S., Dhamodaran, M., Rajendra Prasad, and Ganesan, M., Int. Nano Lett., 2017, vol. 7, no. 2, p. 141. https://doi.org/10.1007/s40089-017-0207-1

    Article  CAS  Google Scholar 

  4. Rodríguez-León, E., Iñiguez-Palomares, R., Navarro, R.E., Herrera-Urbina, R., Tanori, J., Iñiguez-Palomares, C., and Maldonado, A., Nanoscale Res. Lett., 2013, vol. 8, no. 1, p. 318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kumar, A. and Ghosh, A., J. Biotechnol. Biochem., 2016, vol. 12, no. 2, p. 95.

    Article  CAS  Google Scholar 

  6. Das, V.L., Thomas, R., Varghese, R.T., Soniya, E.V., Mathew, J., and Radhakrishnan, E.K., 3 Biotech, 2014, vol. 4, no. 2, p. 121.

  7. Hidouri, S., Saudi J. Biol. Sci., 2017, vol. 24, no. 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  8. Mezni, A., Mlayah, A., Serin, V., and Smiri, L.S., Mater. Chem. Phys., 2014, vol. 147, no. 3, p. 496.

    Article  CAS  Google Scholar 

  9. Riedel, S. and Kaupp, M., Coord. Chem. Rev., 2009, vol. 253, nos. 5–6, p. 606.

    Article  CAS  Google Scholar 

  10. Šileikaitė, A., Prosyčevas, I., Puišo, J., Juraitis, A., and Guobienė, A., Mater. Sci., 2006, vol. 12, no. 4, p. 287.

    Google Scholar 

  11. Rashid, M.U., Bhuiyan, M.K.H., and Quayum, M.E., J. Pharm. Sci., 2013, vol. 12, no. 1, p. 29.

    Google Scholar 

  12. Kholoud, M.M., Abou El-Noura, A., Eftaihab, A., Al-Warthanb, A., and Reda, A.A., Arabian J. Chem., 2010, vol. 3, no. 3, p. 135.

    Article  CAS  Google Scholar 

  13. Iglesias-Silva, E., Rivas, J., León Isidro, L.M., and López-Quintela, M.A., J. Non-Cryst. Solids, 2007, vol. 353, p. 829.

    Article  CAS  Google Scholar 

  14. Wanga, H., Qiaoa, X., Chena, J., and Ding, S., Colloids Surf., A, 2005, vol. 256, nos. 2–3, p. 111.

    Article  CAS  Google Scholar 

  15. Hussain, J.I., Kumar, S., Hashmi, A.A., and Khan, Z., Adv. Mater. Lett., 2011, vol. 2, no. 3, p. 188.

    Article  CAS  Google Scholar 

  16. Solomon, S.D., Bahadory, M., Jeyarajasingam, A.V., Rutkowsky, S.A., and Boritz, C., J. Chem. Educ., 2007, vol. 84, no. 2, p. 322.

    Article  CAS  Google Scholar 

  17. Guzmán, M.G., Dille, J., and Godet, S., Int. J. Chem. Biomol. Eng., 2009, vol. 2, no. 3, p. 104.

    Google Scholar 

  18. Chauhan, R., Kumar, A., and Chaudhary, R.P., J. Chem. Pharm. Res., 2010, vol. 2, no. 4, p. 178.

    CAS  Google Scholar 

  19. Kim, Y.-S., Seo, Y.S., Kim, K., Han, J.W., Park, Y., and Cho, S., Nanoscale Res. Lett., 2016, vol. 11, no. 1, p. 230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Newman, J.D.S. and Blanchard, G.J., Langmuir, 2006, vol. 22, no. 13, p. 5882.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, X., Li, Q., Wang, H., Huang, J., Lin, L., Wang, W., Sun, D., Su, Y., Opiyo, J.B., Hong, L., Wang, Y., He, N., and Jia, L., J. Nanopart. Res., 2010, vol. 12, p. 1589.

    Article  CAS  Google Scholar 

  22. Keat, C.L., Aziz, A., and Eid, A.M., Bioresour. Bioprocess., 2015, vol. 2, p. 47.

    Article  Google Scholar 

  23. Rao, V.K. and Radhakrishnan, T.P., ACS Appl. Mater. Interfaces, 2015, vol. 7, no. 23, p. 12767.

    Article  CAS  PubMed  Google Scholar 

  24. Vargas-Hernandez, C., Mariscal, M.M., Esparza, R., and Yacaman, M.J., Appl. Phys. Lett., 2010, vol. 96, no. 21, 213115.

    Article  CAS  Google Scholar 

  25. Fatimah, I., Pradita, R.Y., and Nurfalinda, A., Procedia Eng., 2016, no. 148, p. 43.

  26. Jamdagni, P. Khatri, P, and Rana, J.S., J. King Saud Univ., Sci., 2018, vol. 30, no. 2, p. 168. https://doi.org/10.1016/j.jksus.2016.10.002

    Article  Google Scholar 

  27. Sundrarajan, M., Ambika, S., and Bharathi, K., Adv. Powder Technol., 2015, vol. 26, no. 5, p. 1294.

    Article  CAS  Google Scholar 

  28. Yew, Y.P., Shameli, K., Miyake, M., Kuwano, N., Bt Ahmad Khairudin, N.B., Bt Mohamad, S.E., and Lee, K.X., Nanoscale Res. Lett., 2016, vol. 11, 276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saif, S., Tahir, A., and Chen, Y., Nanomaterials, 2016, vol. 6, no. 11, p. 209.

    Article  CAS  PubMed Central  Google Scholar 

  30. Zhan, G., Huang, J., Du, M., Abdul-Rauf, I., Ma, Y., and Li, Q., Mater. Lett., 2011, vol. 65, p. 2989.

    Article  CAS  Google Scholar 

  31. Molaie, R., Farhadi, K., Forough, M., and Sabzi, R.E., in Proc. 4th Int. Conf. on Nanostructures (ICNS4), Kish Island, Iran, 2012, p. 12.

  32. Khan, M., Khan, M., Kuniyil, M., Adil, S.F., Al-Warthan, A., Alkhathlan, H.Z., Tremel, W., Tahir, M.N., and Siddiqui, M.R-H., Dalton Trans., 2014, vol. 43, p. 9026.

    Article  CAS  PubMed  Google Scholar 

  33. Basavegowda, N., Mishra, K., and Lee, Y.P., New J. Chem., 2015, vol. 39, p. 972.

    Article  CAS  Google Scholar 

  34. Hidouri, S. and Yohmes, M.B., Bioprocess. Biosyst. Eng., 2016, vol. 39, p. 1635.

    Article  CAS  PubMed  Google Scholar 

  35. Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K., and Thangamani, S., Asian Pac. J. Trop. Biomed., 2012, vol. 2, no. 7, p. 574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hidouri, S., Ensibi, C., Landoulsi, A., and Daly-Yahia, M.N., Water, Air, Soil Pollut., 2017, vol. 228, p. 79.

    Article  CAS  Google Scholar 

  37. Maqbool, Q., Nazar, M., Naz, S., Hussain, T., Jabeen, N., Kausar, R., Anwaar, S., Abbas, F., and Jan, T., Int. J. Nanomed., 2016, vol. 11, p. 5015.

    Article  CAS  Google Scholar 

  38. Arumugam, A., Karthikeyan, C., Haja Hameed, A.S., Gopinath, K., Gowri, S., and Karthika, V., Mater. Sci. Eng., C, 2015, vol. 49, p. 408.

    Article  CAS  Google Scholar 

  39. Petla, R.K., Vivekanandhan, S., Misra, Mand Mohanty, A.K., and Satyanarayana, N., J. Biomater. Nanobiotechnol., 2012, vol. 3, p. 14.

    Article  CAS  Google Scholar 

  40. Qazi, F., Hussain, Z., and Tahir, M.N., RSC Adv., 2016, vol. 6, 60277.

    Article  CAS  Google Scholar 

  41. Bruneton, J., Pharmacognosie: Phytochimie, plantes medicinales, Paris: Tec & Doc, 2009, 4th ed.

    Google Scholar 

  42. Munhoz, V.M., Longhini, R., Souza, J.R.P., Zequi, J.A.C., Leite Mellod, E.V.S., Lopes, G.C., and Mello, J.C.P., Rev. Bras. Farmacogn., 2014, vol. 24, no. 5, p. 576.

    Article  CAS  Google Scholar 

  43. Oluwaniyi, O.O., Adegoke, H.I., Adesuji, E.T., Alabi, A.B., Bodede, S.O., Labulo, A.H., and Oseghale, C.O., Appl. Nanosci., 2016, vol. 6, no. 6, p. 903.

    Article  CAS  Google Scholar 

  44. Moldovan, R.I., Oprean, R., Benedec, D., Hanganu, D., Duma, M., Oniga, I., and Digest, L., J. Nanomater. Biostruct., 2014, vol. 2, no. 9, p. 559.

    Google Scholar 

  45. Tahri, W., Chatti, A., Romero-González, R., López-Gutiérrez, N., Frenich, A.G., and Landoulsi, A., Anal. Methods, 2016, vol. 8, no. 17, p. 3517.

    Article  CAS  Google Scholar 

  46. Liu, C., Liu, Q., Sun, J., Jiang, B., and Yan, J., J. Food Drug Anal., 2014, vol. 22, p. 492.

    Article  CAS  PubMed  Google Scholar 

  47. Deters, A., Zippel, J., Hellenbrand, N., Pappai, D., Possemeyer, C., and Hensel, A., J. Ethnopharmacol., 2010, vol. 127, no. 1, p. 62.

    Article  PubMed  Google Scholar 

  48. Jiang, B., Feng, Z., Liu, C., Xu, Y., and Li, D., J. Food Sci. Technol., 2015, vol. 52, no. 5, p. 2878.

    Article  CAS  PubMed  Google Scholar 

  49. Carpena-Ruiz, R., Sopeña, A., and Ramon, A.M., Plant Soil, 1989, vol. 119, no. 2, p. 251.

    Article  CAS  Google Scholar 

  50. Parks, J.M., Johs, A., Podar, M., Bridou, R., Hurt, R.A., Jr., Smith, S.D., Tomanicek, S.J., Qian, Y., Brown, S.D., Brandt, C.C., Palumbo, A.V., Smith, J.C., Wall, J.D., Elias, D.A., and Liang, L., Science, 2013, vol. 339, no. 6125, p. 1332.

    Article  CAS  PubMed  Google Scholar 

  51. Siddiqi, K.S. and Husen, A., Nanoscale Res. Lett., 2016, vol. 11, p. 98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang, X., He, X., Wang, K., and Yang, X., J. Biomed. Nanotechnol., 2011, vol. 7, no. 2, p. 245.

    Article  CAS  PubMed  Google Scholar 

  53. Newman, D.K. and Kolter, R., Nature, 2000, vol. 405, no. 6782, p. 94.

    Article  CAS  PubMed  Google Scholar 

  54. Velusamy, P., Kumar, G.V., Jeyanthi, V., Das, J., and Pachaiappan, R., Toxicol. Res., 2016, vol. 32, no. 2, p. 95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sharma, D., Kanchi, S., and Bisetty, K., Arabian J. Chem., 2015. https://doi.org/10.1016/j.arabjc.2015.11.002

  56. Baker, S., Rakshith, D., Kavitha, K.S., Santosh, P., Kavitha, H.U., Rao, Y., and Satish, S., Bioimpacts, 2013, vol. 3, no. 3, p. 111.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Marchiol, L., Ital. J. Agron., 2012, vol. 7, p. 3, e37.

  58. Tanga, J., Huang, J., and Man, S.-Q., Spectrochim. Acta, Part A, 2013, vol. 103, p. 349.

    Article  CAS  Google Scholar 

  59. Mollinger, S.A., Salleo, A., and Spakowitz, A.J., ACS Cent. Sci, 2016, vol. 2, p. 910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kline, R.J. and McGehee, M.D., J. Macromol. Sci., Polym. Rev., 2006, vol. 46, p. 27.

    CAS  Google Scholar 

  61. Khodashenas, B. and Ghorbani, H.R., Korean J. Chem. Eng., 2014, vol. 31, no. 7, p. 1105.

    Article  CAS  Google Scholar 

  62. Hamamoto, K., Kawakita, H., Ohto, K., and Inoue, K., React. Funct. Polym., 2009, vol. 69, p. 694.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Dr. Hidouri S. would like to thank all Dr. Zouhair Aloui and Dr. Aymen Wahbi for a fruitful discussions that contribute to sculpt my knowledge in chemistry to fulfill the requirement to get my second PhD in Chemsitry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slah Hidouri.

Ethics declarations

The authors declare no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hidouri, S., Yohmes, M.B., Landoulsi, A. et al. Commune Propriety between Reducing Agents Implicated in Synthesis of Metallic Nanoparticles. Ref. J. Chem. 9, 153–160 (2019). https://doi.org/10.1134/S2079978019030014

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079978019030014

Keywords:

Navigation