Skip to main content

Solid-State Green Synthesis of Different Nanoparticles

  • Chapter
  • First Online:
Advances in Green Synthesis

Abstract

In material science, “green synthesis” has achieved more attention as an environmentally sustainable, trustable and eco-friendly way for the large-scale synthesis of nanomaterial containing metal and metal oxides. Metal nanoparticles like silver and gold are synthesized by utilizing plant extracts. Further, metal oxides of Zn, ZnO and copper (CuO) are also synthesized by using plant metabolites. It is an essential tool for decreasing the detrimental effects and has great contribution in various applications such as drug delivery, dentistry, X-ray imaging and agricultural engineering and in many more fields. Synthesis of metal nanoparticles and metal oxide nanoparticles by following a greener route is summarized in this chapter. This chapter also throws light on the various applications of metal and metal oxide nanoparticles in different fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • (a) Abdelghany TM, Al-Rajhi AM, Al Abboud MA, Alawlaqi MM, Magdah AG, Helmy EA, Mabrouk AS (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. BioNanoSci 8(1):5–16. (b) Makarov VV, Love AJ, Sinitsyna OV, Makarova SS, Yaminsky IV, Taliansky ME, Kalinina NO (2014) “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae (aнглoязычнaя вepcия) 6(1):20

    Google Scholar 

  • Abid JP, Wark AW, Brevet PF, Girault HH (2002) Preparation of silver nanoparticles in solution from a silver salt by laser irradiation. Chem Commun 7:792–793

    Article  CAS  Google Scholar 

  • Adelere IA, Lateef A (2016) A novel approach to the green synthesis of metallic nanoparticles: the use of agro-wastes, enzymes, and pigments. Nanotech Rev 5(6):567–587

    Article  CAS  Google Scholar 

  • Ahmed AA, Hamzah H, Maaroof M (2018) Analyzing formation of silver nanoparticles from the filamentous fungus Fusarium oxysporum and their antimicrobial activity. Turkish J Biol 42(1):54–62

    Article  CAS  Google Scholar 

  • Alivisatos AP (1996) Semiconductor clusters, nanocrystals, and quantum dots. Science 271(5251):933–937

    Google Scholar 

  • Al-Namil DS, El Khoury E, Patra D (2019) Solid-state green synthesis of Ag NPs: higher temperature harvests larger Ag NPs but smaller size has better catalytic reduction reaction. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  • Anjum S, Abbasi BH, Shinwari ZK (2016) Plant-mediated green synthesis of silver nanoparticles for biomedical applications: challenges and opportunities. Pak J Bot 48(4):1731–1760

    CAS  Google Scholar 

  • Anu K (2016) Wet biochemical synthesis of copper oxide nanoparticles coated on titanium dental implants. Int J Adv Res Sci Eng Technol 3:1191–1194

    Google Scholar 

  • Argueta-Figueroa L, Morales-Luckie RA, Scougall-Vilchis RJ, Olea-Mejía OF (2014) Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog Nat Sci Mater Int 24(4):321–328

    Article  CAS  Google Scholar 

  • Arumugam A, Karthikeyan C, Hameed ASH, Gopinath K, Gowri S, Karthika V (2015) Synthesis of cerium oxide nanoparticles using Gloriosa superba L. leaf extract and their structural, optical and antibacterial properties. Mater Sci Eng, C 49:408–415

    Article  CAS  Google Scholar 

  • Bae CH, Nam SH, Park SM (2002) Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl Surf Sci 197:628–634

    Article  Google Scholar 

  • Bakar NA, Ismail J, Bakar MA (2007) Synthesis and characterization of silver nanoparticles in natural rubber. Mater Chem Phys 104(2–3):276–283

    Article  CAS  Google Scholar 

  • Bakir EM, Younis NS, Mohamed ME, El Semary NA (2018) Cyanobacteria as nanogold factories: chemical and anti-myocardial infarction properties of gold nanoparticles synthesized by Lyngbya majuscula. Mar Drugs 16(6):217

    Article  PubMed Central  CAS  Google Scholar 

  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170

    Article  CAS  Google Scholar 

  • Boisselier E, Astruc D (2009) Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 38(6):1759–1782

    Article  CAS  PubMed  Google Scholar 

  • Brown SD, Nativo P, Smith JA, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132(13):4678–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281(5385):2013–2016

    Google Scholar 

  • Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E (2018) Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8(9):681

    Article  PubMed Central  CAS  Google Scholar 

  • Carnes CL, Klabunde KJ (2003) The catalytic methanol synthesis over nanoparticle metal oxide catalysts. J Mol Catal A: Chem 194(1–2):227–236

    Article  CAS  Google Scholar 

  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22(2):577–583

    Article  CAS  PubMed  Google Scholar 

  • Cho SH (2005) Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study. Phys Med Biol 50(15):N163

    Article  PubMed  Google Scholar 

  • Coe S, Woo WK, Bawendi M, Bulović V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420(6917):800–803

    Article  CAS  PubMed  Google Scholar 

  • Dadashi S, Poursalehi R, Delavari H (2018) Optical and structural properties of oxidation resistant colloidal bismuth/gold nanocomposite: an efficient nanoparticles based contrast agent for X-ray computed tomography. J Mol Liq 254:12–19

    Article  CAS  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of nanoparticles in biology. Adv Mater 20(22):4225–4241

    Article  CAS  Google Scholar 

  • DeLouise LA (2012) Applications of nanotechnology in dermatology. J Invest Dermatol 132(3):964–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar S, Reddy EM, Shiras A, Pokharkar V, Prasad BEE (2008) Natural gum reduced/stabilized gold nanoparticles for drug delivery formulations. Chem Eur J 14(33):10244–10250

    Google Scholar 

  • Dickson DP (1999) Nanostructured magnetism in living systems. J Magn Magn Mater 203(1–3):46–49

    Article  CAS  Google Scholar 

  • Duncan B, Kim C, Rotello VM (2010) Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J Controlled Release 148(1):122–127

    Article  CAS  Google Scholar 

  • El Khoury E, Abiad M, Kassaify ZG, Patra D (2015) Green synthesis of curcumin conjugated nano silver for the applications in nucleic acid sensing and anti-bacterial activity. Colloids Surf, B 127:274–280

    Article  CAS  Google Scholar 

  • Fayaz M, Tiwary CS, Kalaichelvan PT, Venkatesan R (2010) Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride. Colloids Surf, B 75(1):175–178

    Article  CAS  Google Scholar 

  • Francis S, Joseph S, Koshy EP, Mathew B (2017) Green synthesis and characterization of gold and silver nanoparticles using Mussaenda glabrata leaf extract and their environmental applications to dye degradation. Environ Sci Pollut Res 24(21):17347–17357

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, Parsons JG, Troiani H, Jose-Yacaman M (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4):1357–1361

    Article  CAS  Google Scholar 

  • Ghiuță I, Cristea D, Croitoru C, Kost J, Wenkert R, Vyrides I, Munteanu D (2018) Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Appl Surf Sci 438:66–73

    Article  CAS  Google Scholar 

  • Gholami-Shabani M, Shams-Ghahfarokhi M, Gholami-Shabani Z, Akbarzadeh A, Riazi G, Ajdari S, Razzaghi-Abyaneh M (2015) Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco-friendly approach. Process Biochem 50(7):1076–1085

    Article  CAS  Google Scholar 

  • Ghorbani HR, Mehr FP, Poor AK (2015) Extracellular synthesis of copper nanoparticles using culture supernatants of Salmonella typhimurium. Orient J Chem 31(1):527–529

    Article  Google Scholar 

  • Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60(11):1307–1315

    Article  CAS  PubMed  Google Scholar 

  • Hainfeld JF, Slatkin DN, Smilowitz HM (2004) The use of gold nanoparticles to enhance radiotherapy in mice. Phys Med Biol 49(18):N309

    Article  CAS  PubMed  Google Scholar 

  • Hamouda IM (2012) Current perspectives of nanoparticles in medical and dental biomaterials. J Biomed Res 26(3):143–151

    Article  CAS  Google Scholar 

  • Han G, Ghosh P, De M, Rotello VM (2007a) Drug and gene delivery using gold nanoparticles. NanoBiotechnology 3(1):40–45

    Article  CAS  Google Scholar 

  • Han G, Ghosh P, Rotello VM (2007b) Functionalized gold nanoparticles for drug delivery. Nanomedicine 2(1):113–123

    Google Scholar 

  • Han G, Ghosh P, Rotello VM (2007c) Functionalized gold nanoparticles for drug delivery. Nano Med 2(1):113–123

    CAS  Google Scholar 

  • Harfenist SA, Wang ZL, Alvarez MM, Vezmar I, Whetten RL (1996) Highly oriented molecular Ag nanocrystal arrays. J Phys Chem 100(33):13904–13910

    Article  CAS  Google Scholar 

  • Heath JR, Knobler CM, Leff DV (1997) Pressure/temperature phase diagrams and super lattices of organically functionalized metal nanocrystal monolayers: the influence of particle size, size distribution, and surface passivant. J Phys Chem B 101(2):189–197

    Article  CAS  Google Scholar 

  • Heiligtag FJ, Niederberger M (2013) The fascinating world of nanoparticle research. Mater Today 16(7–8):262–271

    Article  CAS  Google Scholar 

  • Hojjat SS, Kamyab M (2017) The effect of silver nanoparticle on Fenugreek seed germination under salinity levels. Rus Agric Sci 43(1):61–65

    Article  Google Scholar 

  • Hong ZS, Cao Y, Deng JF (2002) A convenient alcohothermal approach for low temperature synthesis of CuO nanoparticles. Mater Lett 52(1–2):34–38

    Article  CAS  Google Scholar 

  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Hong J (2007) Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18(10):105104

    Article  CAS  Google Scholar 

  • Hussain I, Singh NB, Singh A, Singh H, Singh SC (2016) Green synthesis of nanoparticles and its potential application. Biotech Lett 38(4):545–560

    Article  CAS  Google Scholar 

  • Iqbal M, Raja NI, Hussain M, Ejaz M, Yasmeen F (2019) Effect of silver nanoparticles on growth of wheat under heat stress. Iranian J Sci Technol Trans A: Sci 43(2):387–395

    Article  Google Scholar 

  • Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9(6):385

    CAS  PubMed  PubMed Central  Google Scholar 

  • Itakura T, Torigoe K, Esumi K (1995) Preparation and characterization of ultrafine metal particles in ethanol by UV irradiation using a photo initiator. Langmuir 11(10):4129–4134

    Article  CAS  Google Scholar 

  • Jakhmola A, Anton N, Vandamme TF (2012) Inorganic nanoparticles based contrast agents for X-ray computed tomography. Adv Healthc Mater 1(4):413–431

    Article  CAS  PubMed  Google Scholar 

  • Kattumuri V, Katti K, Bhaskaran S, Boote EJ, Casteel SW, Fent GM, Katti KV (2007) Gum arabic as a phytochemical construct for the stabilization of gold nanoparticles: in vivo pharmacokinetics and X-ray-contrast-imaging studies. Small 3(2):333–341

    Article  CAS  PubMed  Google Scholar 

  • Khan AK, Rashid R, Murtaza G, Zahra A (2014) Gold nanoparticles: synthesis and applications in drug delivery. Tropical J Pharm Res 13(7):1169–1177

    Article  CAS  Google Scholar 

  • Khatami M, Varma RS, Zafarnia N, Yaghoobi H, Sarani M, Kumar VG (2018) Applications of green synthesized Ag, ZnO and Ag/ZnO nanoparticles for making clinical antimicrobial wound-healing bandages. Sustain Chem Pharm 10:9–15

    Article  Google Scholar 

  • Kim JS (2007) Reduction of silver nitrate in ethanol by poly (N-vinylpyrrolidone). J Ind Eng Chem 13(4):566–570

    CAS  Google Scholar 

  • Kim CK, Ghosh P, Rotello VM (2009) Multimodal drug delivery using gold nanoparticles. Nanoscale 1(1):61–67

    Article  CAS  PubMed  Google Scholar 

  • Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci 96(24):13611–13614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komarneni S, Li D, Newalkar B, Katsuki H, Bhalla AS (2002) Microwave-polyol process for Pt and Ag nanoparticles. Langmuir 18(15):5959–5962

    Article  CAS  Google Scholar 

  • (a) Laha B, Goswami R, Maiti S, Sen KK (2019) Smart karaya-locust bean gum hydrogel particles for the treatment of hypertension: optimization by factorial design and pre-clinical evaluation. Carbohyd Polym 210:274–288. (b) Aspinall GO, Khondo L, Williams BA (1987) The hex-5-enose degradation: cleavage of glycosiduronic acid linkages in modified methylated Sterculia gums. Can J Chem 65(9):2069–2076. (c) Krishnappa PB, Badalamoole V (2019) Karaya gum-graft-poly (2-(dimethylamino) ethyl methacrylate) gel: an efficient adsorbent for removal of ionic dyes from water. Int J Biol Macromol 122:997–1007

    Google Scholar 

  • Lara HH, Guisbiers G, Mendoza J, Mimun LC, Vincent BA, Lopez-Ribot JL, Nash KL (2018) Synergistic antifungal effect of chitosan-stabilized selenium nanoparticles synthesized by pulsed laser ablation in liquids against Candida albicans biofilms. Int J Nanomed 13:2697

    Article  CAS  Google Scholar 

  • Liu YC, Lin LH (2004) New pathway for the synthesis of ultrafine silver nanoparticles from bulk silver substrates in aqueous solutions by sono electrochemical methods. Electrochem Commun 6(11):1163–1168

    Article  CAS  Google Scholar 

  • Liz-Marzán LM, Lado-Touriño I (1996) Reduction and stabilization of silver nanoparticles in ethanol by nonionic surfactants. Langmuir 12(15):3585–3589

    Article  Google Scholar 

  • Lovley DR, Stolz JF, Nord GL, Phillips EJ (1987) Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330(6145):252–254

    Article  CAS  Google Scholar 

  • Luechinger NA, Grass RN, Athanassiou EK, Stark WJ (2010) Bottom-up fabrication of metal/metal nanocomposites from nanoparticles of immiscible metals. Chem Mater 22(1):155–160

    Article  CAS  Google Scholar 

  • Mallick K, Witcomb MJ, Scurrell MS (2005) Self-assembly of silver nanoparticles in a polymer solvent: formation of a nano chain through nanoscale soldering. Mater Chem Phys 90(2–3):221–224

    Article  CAS  Google Scholar 

  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492

    Article  CAS  PubMed  Google Scholar 

  • Manivasagan P, Venkatesan J, Kang KH, Sivakumar K, Park SJ, Kim SK (2015) Production of α-amylase for the biosynthesis of gold nanoparticles using Streptomyces sp. MBRC-82. Int J Biol Macromol 72:71–78

    Article  CAS  PubMed  Google Scholar 

  • Manoj D, Saravanan R, Santhanalakshmi J, Agarwal S, Gupta VK, Boukherroub R (2018) Towards green synthesis of monodisperse Cu nanoparticles: an efficient and high sensitive electrochemical nitrite sensor. Sens Actuators B: Chem 266:873–882

    Article  CAS  Google Scholar 

  • Menon S, Rajeshkumar S, Kumar V (2017) A review on biogenic synthesis of gold nanoparticles, characterization, and its applications. Res Eff Technol 3(4):516–527

    Google Scholar 

  • Miri A, Sarani M (2018) Biosynthesis, characterization and cytotoxic activity of CeO2 nanoparticles. Ceram Int 44(11):12642–12647

    Article  CAS  Google Scholar 

  • (a) Nadagouda MN, Varma RS (2006) Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods. Green Chem 8(6):516–518. (b) Nadagouda MN, Varma RS (2008) Green synthesis of Ag and Pd nanospheres, nanowires, and nanorods using vitamin: catalytic polymerisation of aniline and pyrrole. J Nanomater

    Google Scholar 

  • Njagi JI, Kagwanja SM (2011) The interface in biosensing: improving selectivity and sensitivity. In: Interfaces and interphases in analytical chemistry. American Chemical Society, pp 225–247

    Google Scholar 

  • Paciotti GF, Kingston DG, Tamarkin L (2006) Colloidal gold nanoparticles: a novel nanoparticle platform for developing multifunctional tumor-targeted drug delivery vectors. Drug Dev Res 67(1):47–54

    Article  CAS  Google Scholar 

  • Padil VVT, Černík M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed 8:889

    Google Scholar 

  • Pantidos N, Horsfall LE (2014) Biological synthesis of metallic nanoparticles by bacteria, fungi and plants. J Nanomed Nanotechnol 5(5):1

    Article  CAS  Google Scholar 

  • Pattabi M, Uchil J (2000) Synthesis of cadmium sulphide nanoparticles. Sol Energy Mater Sol Cells 63(4):309–314

    Article  CAS  Google Scholar 

  • Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Gübitz G, Gedanken A (2009) CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf Coat Technol 204(1–2):54–57

    Article  CAS  Google Scholar 

  • Petit C, Lixon P, Pileni MP (1993) In situ synthesis of silver nanocluster in AOT reverses micelles. J Phys Chem 97(49):12974–12983

    Article  CAS  Google Scholar 

  • Philipse AP, Maas D (2002) Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18(25):9977–9984

    Article  CAS  Google Scholar 

  • Pol VG, Srivastava DN, Palchik O, Palchik V, Slifkin MA, Weiss AM, Gedanken A (2002) Sonochemical deposition of silver nanoparticles on silica spheres. Langmuir 18(8):3352–3357

    Article  CAS  Google Scholar 

  • Polte J (2015) Fundamental growth principles of colloidal metal nanoparticles–a new perspective. CrystEngComm 17(36):6809–6830

    Article  CAS  Google Scholar 

  • Pourkhalili N, Hosseini A, Nili-Ahmadabadi A, Hassani S, Pakzad M, Baeeri M, Mohammadirad A, Abdollahi M (2011) Biochemical and cellular evidence of the benefit of a combination of cerium oxide nanoparticles and selenium to diabetic rats. World J Diab 2(11):204

    Article  Google Scholar 

  • Pum D, Sleytr UB (1999) The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol 17(1):8–12

    Article  CAS  Google Scholar 

  • Ramesh P, Rajendran A, Meenakshisundaram M (2014) Green syntheis of zinc oxide nanoparticles using flower extract cassia auriculata. J Nanosci Nanotechnol 2(1):41–45

    Google Scholar 

  • Rana V, Rai P, Tiwary AK, Singh RS, Kennedy JF, Knill CJ (2011) Modified gums: approaches and applications in drug delivery. Carbohyd Polym 83(3):1031–1047

    Article  CAS  Google Scholar 

  • Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8(1):28–35

    Google Scholar 

  • Raveendran P, Fu J, Wallen SL (2003) Completely “green” synthesis and stabilization of metal nanoparticles. J Am Chem Soc 125(46):13940–13941

    Article  CAS  PubMed  Google Scholar 

  • Ravindran TR, Arora AK, Balamurugan B, Mehta BR (1999) Inhomogeneous broadening in the photoluminescence spectrum of CdS nanoparticles. Nanostruct Mater 11(5):603–609

    Article  CAS  Google Scholar 

  • Rossi L, Fedenia LN, Sharifan H, Ma X, Lombardini L (2019) Effects of foliar application of zinc sulfate and zinc nanoparticles in coffee (Coffea arabica L.) plants. Plant Physiol Biochem 135:160–166

    Article  CAS  PubMed  Google Scholar 

  • Roy N, Barik A (2010) Green synthesis of silver nanoparticles from the unexploited weed resources. Int J Nanotechnol 4:95

    Google Scholar 

  • Sandmann G, Dietz H, Plieth W (2000) Preparation of silver nanoparticles on ITO surfaces by a double-pulse method. J Electroanal Chem 491(1–2):78–86

    Article  CAS  Google Scholar 

  • Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangari KS, Ravikumar V (2014) Green synthesis of colloidal copper oxide nanoparticles using Carica papaya and its application in photocatalytic dye degradation. Spectrochim Acta Part A Mol Biomol Spectrosc 121:746–750

    Article  CAS  Google Scholar 

  • Sarkar J, Acharya K (2017) Alternaria alternata culture filtrate mediated bioreduction of chloroplatinate to platinum nanoparticles. Inorganic Nano-Metal Chem 47(3):365–369

    Article  CAS  Google Scholar 

  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA (2007a) Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach. Process Biochem 42(5):919–923

    Google Scholar 

  • Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S (2007b) Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotechnol Biol Med 3(2):168–171

    Google Scholar 

  • Shang Y, Hasan M, Ahammed J, Li M, Yin H, Zhou J (2019) Applications of nanotechnology in plant growth G and crop protection: a review. Molecules 24(14):2558

    Article  CAS  PubMed Central  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502

    Article  CAS  PubMed  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004b) Biological synthesis of triangular gold nanoprisms. Nat Mater 3(7):482–488

    Article  CAS  PubMed  Google Scholar 

  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresde JL, Pal T (2007) Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41(14):5137–5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji S, Madhu S, Singh S (2011) Extracellular synthesis of antibacterial silver nanoparticles using psychrophilic bacteria. Process Biochem 46(9):1800–1807

    Article  CAS  Google Scholar 

  • Silver S (2003) Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol Rev 27(2–3):341–353

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Messner P, Pum D, Sára M (1999) Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38(8):1034–1054

    Article  CAS  Google Scholar 

  • Smetana AB, Klabunde KJ, Sorensen CM (2005) Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D super lattice formation. J Colloid Interface Sci 284(2):521–526

    Article  CAS  PubMed  Google Scholar 

  • Smuleac V, Varma R, Baruwati B, Sikdar S, Bhattacharyya D (2011a) Nanostructured membranes for enzyme catalysis and green synthesis of nanoparticles. Chemsuschem 4(12):1773–1777

    Article  CAS  PubMed  Google Scholar 

  • Smuleac V, Varma R, Sikdar S, Bhattacharyya D (2011b) Green synthesis of Fe and Fe/Pd bimetallic nanoparticles in membranes for reductive degradation of chlorinated organics. J Membr Sci 379(1–2):131–137

    Article  CAS  Google Scholar 

  • Stiger RM, Gorer S, Craft B, Penner RM (1999) Investigations of electrochemical silver nanocrystal growth on hydrogen-terminated silicon (100). Langmuir 15(3):790–798

    Article  CAS  Google Scholar 

  • Sturikova H, Krystofova O, Huska D, Adam V (2018) Zinc, zinc nanoparticles and plants. J Hazard Mater 349:101–110

    Article  CAS  PubMed  Google Scholar 

  • Suganya KU, Govindaraju K, Kumar VG, Dhas TS, Karthick V, Singaravelu G, Elanchezhiyan M (2015) Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against gram positive organisms. Mater Sci Eng, C 47:351–356

    Article  CAS  Google Scholar 

  • Tan Y, Wang Y, Jiang L, Zhu D (2002) Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system. J Colloid Interface Sci 249(2):336–345

    Article  CAS  PubMed  Google Scholar 

  • Trono JD, Mizuno K, Yusa N, Matsukawa T, Yokoyama K, Uesaka M (2011) Size, concentration and incubation time dependence of gold nanoparticle uptake into pancreas cancer cells and its future application to X-ray drug delivery system. J Rad Res 52(1):103–109

    Article  Google Scholar 

  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2006a) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf, B 53(1):55–59

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Nachane RP, Balasubramanya RH, Varadarajan PV (2006b) A novel one-pot ‘green’ synthesis of stable silver nanoparticles using soluble starch. Carbohyd Res 341(12):2012–2018

    Article  CAS  Google Scholar 

  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418

    Article  CAS  Google Scholar 

  • Vijaya Kumar R, Elgamiel R, Diamant Y, Gedanken A, Norwig J (2001) Sonochemical preparation and characterization of nanocrystalline copper oxide embedded in poly (vinyl alcohol) and its effect on crystal growth of copper oxide. Langmuir 17(5):1406–1410

    Article  CAS  Google Scholar 

  • Vilchis-Nestor AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, Arenas-Alatorre JA (2008) Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater Lett 62(17–18):3103–3105

    Article  CAS  Google Scholar 

  • Vorobyova SA, Lesnikovich AI, Sobal NS (1999) Preparation of silver nanoparticles by interphase reduction. Colloids Surf, A 152(3):375–379

    Article  CAS  Google Scholar 

  • Wang X, Sun W, Zhang S, Sharifan H, Ma X (2018) Elucidating the effects of cerium oxide nanoparticles and zinc oxide nanoparticles on arsenic uptake and speciation in rice (Oryza sativa) in a hydroponic system. Environ Sci Technol 52(17):10040–10047

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Lin Y, Xu Y, Yin Y, Guo H, Du W (2019) Divergence in response of lettuce (var. ramosa Hort.) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ Pollut Bioavailability 31(1):80–84

    Google Scholar 

  • Xu JF, Ji W, Shen ZX, Tang SH, Ye XR, Jia DZ, Xin XQ (1999) Preparation and characterization of CuO nanocrystals. J Solid State Chem 147(2):516–519

    Article  CAS  Google Scholar 

  • Yu DG (2007) Formation of colloidal silver nanoparticles stabilized by Na+–poly (γ-glutamic acid)–silver nitrate complex via chemical reduction process. Colloids Surf, B 59(2):171–178

    Article  CAS  Google Scholar 

  • Zain NM, Stapley AGF, Shama G (2014) Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohyd Polym 112:195–202

    Article  CAS  Google Scholar 

  • Zheng L, Hong F, Lu S, Liu C (2005) Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104(1):83–91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alok Kumar Panda or Rojalin Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hembram, M. et al. (2021). Solid-State Green Synthesis of Different Nanoparticles. In: Inamuddin, Boddula, R., Ahamed, M.I., Khan, A. (eds) Advances in Green Synthesis. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-67884-5_17

Download citation

Publish with us

Policies and ethics