Skip to main content
Log in

Variability of Isotope Composition (15N/14N and 13С/12С) in Tissues and Organs of Mediterranean Soil Invertebrates

  • SYSTEMATIC STUDY OF ARID TERRITORIES
  • Published:
Arid Ecosystems Aims and scope Submit manuscript

Abstract

In recent decades, various isotopic methods have been widely used to study trophic relationships in soil ecosystems, because the isotopic signature of heterotrophic organisms reflects the isotopic composition of their preferred food objects. The composition of carbon (δ13C) and nitrogen (δ15N) isotopes of biological objects is most often used in such environmental research. However, the correct use of the method to reconstruct detrital food webs is often hampered by the individual (within the body) variability of the carbon and nitrogen isotopic composition in the tissues and organs of many groups of soil invertebrates. The goal of this study is to compare the individual variability of isotopic composition of various tissues and organs of common Mediterranean species of woodlice (Armadillo officinalis, Armadillidae, Isopoda and Armadillidium vulgare, Armadillidiidae, Isopoda) and the Mediterranean banded centipede (Chilopoda, Scolopendromorpha, Scolopendra cingulata). Soil invertebrates were collected on the territory of the Utrish State Natural Reserve (Krasnodar krai, Russia). Isotopic analyses were performed for the exoskeleton, muscles, intestinal walls, fat body (only for centipedes), reproductive system, legs, and a whole, homogenized body. The isotope composition of δ13С and δ15N was estimated with a set of equipment consisting of an elemental analyzer and an isotope mass spectrometer. The differences in δ13C between the tissues of woodlice reached 5–6‰ due to the incorporation of inorganic carbonates in the exoskeleton. The tissues of the banded centipede showed no significant difference in their isotopic composition. The trophic position of the large woodlouse species can be best characterized by the isotope analysis of muscle tissues. The use of limbs is possible only after preliminary assessment of the carbonate content in the integumentary tissues of the species. The homogenization of large species is unfavorable, as well as the remains of exoskeleton fragments and food debris in the analyzed sample. For centipedes, one can use not only muscles but also homogenized samples of the whole body, as well as individual parts of the body and organs, excluding the gut contents. The results are applicable for the optimization of soil-zoological studies via isotopic analysis of the tissues of various invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Ben-David, M. and Flaherty, E.A., Stable isotopes in mammalian research: a beginner’s guide, J. Mamm., 2012, vol. 93, pp. 312–328.

    Article  Google Scholar 

  2. David, J.F. and Vannier, G., Seasonal field analyses of water and fat content in the long-lived millipede Polyzonium germanicum (Diplopoda, Polyzoniidae), J. Zool., 1995, vol. 236, pp. 667–679.

    Article  Google Scholar 

  3. De Smedt, P., Baeten, L., Berg, M.P., Gallet-Moron, E., Brunet, J., Cousins, S.A.O., Decocq, G., Diekmann, M., Giffard, B., De Frenne, P., Hermy, M., Bonte, D., and Verheyen, K., Desiccation resistance determines distribution of woodlice along forest edge-to-interior gradients, Eur. J. Soil Biol., 2018, vol. 85, pp. 1–3.

    Article  Google Scholar 

  4. Ehrich, D., Tarroux, A., Stien, J., Lecomte, N., Killengreen, S., Berteaux, D., and Yoccoz, N.G., Stable isotope analysis: modeling lipid normalization for muscle and eggs from arctic mammals and birds, Methods Ecol. Evol., 2011, vol. 2, pp. 66–76.

    Article  Google Scholar 

  5. Frossard, V., Belle, S., Verneaux, V., Millet, L., and Magny, M., A study of the δ13C offset between chironomid larvae and their exuvial head capsules: implications for palaeoecology, J. Paleolimnol., 2013, vol. 50, pp. 379–386.

    Article  Google Scholar 

  6. Gongalsky, K.B., Soil macrofauna: study problems and perspectives, Soil Biol. Biochem., 2021, vol. 159, art. ID 108281.

  7. Gongalsky, K.B., Pokarzhevskii, A.D., and Savin, F.A., Soil mesofauna of sub-Mediterranean ecosystems in Abrau Peninsula (the South-Western Caucasus), Zool. Zh., 2006, vol. 85, no. 7, pp. 813–819.

    Google Scholar 

  8. Gratton, C. and Forbes, A., Changes in δ13C stable isotopes in multiple tissues of insect predators fed isotopically distinct prey, Oecologia, 2006, vol. 147, pp. 615–624.

    Article  Google Scholar 

  9. Hobson, K.A. and Clark, R.G., Assessing avian diets using stable isotopes II: Factors influencing diet-tissue fractionation, Condor, 1992, vol. 94, pp. 189–197.

    Article  Google Scholar 

  10. Hopkin, S., A key to the woodlice of Britain and Ireland, Field Stud., 1991, vol. 7, pp. 599–650.

    Google Scholar 

  11. Jacob, U., Mintenbeck, K., Brey, T. Knust, R., and Beyer, K., Stable isotope food web studies: a case for standardized sample treatment, Mar. Ecol.: Prog. Ser., 2005, vol. 287, pp. 251–253.

    Article  Google Scholar 

  12. Jeffery, S., Gardi, C., Jones, A., Montanarella, L., Marmo, L., Miko, L., Ritz, K., Pérès, G., Römbke, J., and Putten, W.V., European Atlas of Soil Biodiversity, Luxembourg: Off. Eur. Union, 2010.

    Google Scholar 

  13. Klarner, B., Maraun, M., and Scheu, S., Trophic diversity and niche partitioning in a species rich predator guild—Natural variations in stable isotope ratios (13C/12C, 15N/14N) of mesostigmatid mites (Acari, Mesostigmata) from Central European beech forests, Soil Biol. Biochem., 2013, vol. 57, pp. 327–333.

    Article  CAS  Google Scholar 

  14. Kolasiński, J., Rogers, K., and Frouin, P., Effects of acidification on carbon and nitrogen stable isotopes of benthic macrofauna from a tropical coral reef, Rapid Commun. Mass Spectrom., 2008, vol. 22, pp. 2955–2960.

    Article  Google Scholar 

  15. Korobushkin, D.I., Gongalsky, K.B., and Tiunov, A.V., Isotopic niche (δ13C and δ15N values) of soil macrofauna in temperate forests, Rapid Commun. Mass Spectrom., 2014, vol. 28, pp. 1303–1311.

    Article  CAS  Google Scholar 

  16. Layman, C.A., Araujo, M.S., Boucek, R., Hammerschlag-Peyer, C.M., Harrison, E., Jud, Z.R., Matich, P., Rosenblatt, A.E., Vaudo, J.J., Yeager, L.A., Post, D.M., and Bearhop, S., Applying stable isotopes to examine food-web structure: an overview of analytical tools, Biol. Rev., 2011, vol. 87, pp. 545–562.

    Article  Google Scholar 

  17. Lesage, V., Hammill, M.O., and Kovacs, K.M., Diet-tissue fractionation of stable carbon and nitrogen isotopes in phocid seals, Mar. Mamm. Sci., 2002, vol. 18, pp. 182–193.

    Article  Google Scholar 

  18. Maraun, M., Erdmann, G., Fischer, B.M., Pollierer, M.M., Norton, R.A., Schneider, K., and Scheu, S., Stable isotopes revisited: their use and limits for oribatid mite trophic ecology, Soil Biol. Biochem., 2011, vol. 43, pp. 877–882.

    Article  CAS  Google Scholar 

  19. Martinez del Rio, C., Wolf, N., Carleton, S.A., and Gannes, L.Z., Isotopic ecology ten years after a call for more laboratory experiments, Biol. Rev., 2009, vol. 84, pp. 91–111.

    Article  Google Scholar 

  20. Mateo, M.A., Serrano, O., Serrano, L., and Michener, R.H., Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: implications for food web studies using stable isotopes, Oecologia, 2008, vol. 157, pp. 105–115.

    Article  Google Scholar 

  21. Perkins, M.J., McDonald, R.A., van Veen, F.J.F., Kelly, S.D., Rees, G., and Bearhop, S., Important impacts of tissue selection and lipid extraction on ecological parameters derived from stable isotope ratios, Methods Ecol. Evol., 2013, vol. 4, pp. 944–953.

    Google Scholar 

  22. Peterson, B.J. and Fry, B., Stable isotopes in ecosystem studies, Annu. Rev. Ecol., Evol., Syst., 1987, vol. 18, pp. 293–320.

    Article  Google Scholar 

  23. Phillips D.L. and Eldridge, P.M. Estimating the timing of diet shifts using stable isotopes, Oecologia, 2006, vol. 147, pp. 195–203.

    Article  Google Scholar 

  24. Pinnegar, J.K. and Polunin, N.V.C., Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions, Funct. Ecol., 1999, vol. 13, pp. 225–231.

    Article  Google Scholar 

  25. Post, D.M.P., Using stable isotopes to estimate trophic position: models, methods, and assumptions, Ecology, 2002, vol. 83, pp. 703–718.

    Article  Google Scholar 

  26. Potapov, A.M., Tiunov, A.V., and Scheu, S., Uncovering trophic positions and food resources of soil animals using bulk natural stable isotope composition, Biol. Rev., 2019, vol. 94, pp. 37–59.

    Article  Google Scholar 

  27. Potapov, A.M., Beaulieu, F., Birkhofer, K., et al., Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates, Biol. Rev., 2022.https://doi.org/10.1111/brv.12832

  28. Reshetnikov, A.N. and Korobushkin, D.I., Intra-body variations of stable isotope ratios (δ13C, δ15N) and Influence of storage methods in aquatic and post-aquatic stages of the common toad, Bufo bufo, Water, 2021, vol. 13, p. 2544.

    Article  CAS  Google Scholar 

  29. Schilder, J., Tellenbach, C., Möst, M., Spaak, P., van Hardenbroek, M., Wooller, M.J., and Heiri, O., The stable isotopic composition of Daphnia ephippia reflects changes in δ13C and δ18O values of food and water, Biogeosciences, 2015, vol. 12, pp. 3819–3830.

    Article  Google Scholar 

  30. Schmidt, O., Scrimgeour, C.M., and Curry, J.P., Carbon and nitrogen stable isotope ratios in body tissue and mucus of feeding and fasting earthworms (Lumbricus festivus), Oecologia, 1999, vol. 118, pp. 9–15.

    Article  CAS  Google Scholar 

  31. Schmölzer, K., Ordnung Isopoda (Landasseln). Liferung 4, 5, Berlin: Akademie-Verlag, 1965.

    Google Scholar 

  32. Semenyuk, I.I. and Tiunov, A.V., Intraspecific dispersion and age-related changes of the isotope composition (15N/14N, 13C/12C) of tissues of diplopods (Myriapoda, Diplopoda), Izv. Penz. Gos. Pedagog. Univ. im. V.G. Belinskogo, 2011a, no. 25, pp. 432–440.

  33. Semenyuk, I.I. and Tiunov, A.V., Trophic niche differentiation in millipede communities of forests of the temperate and tropical belts, Moscow Univ. Biol. Sci. Bull., 2011b, vol. 66, no. 2, pp. 68–70.

    Article  Google Scholar 

  34. Serrano, O., Serrano, L., Mateo, M.A., Colombini, I., Chelazzi, L., Gagnarli, E., and Fallaci, M., Acid washing effect on elemental and isotopic composition of whole beach arthropods: implications for food web studies using stable isotopes, Acta Oecol., 2008, vol. 34, pp. 89–96.

    Article  Google Scholar 

  35. Shipley, O.N. and Matich, P., Studying animal niches using bulk stable isotope ratios: an updated synthesis, Oecologia, 2020, vol. 193, pp. 27–51.

    Article  Google Scholar 

  36. Traugott, M., Pázmándi, C., Kaufmann, R., and Juen, A., Evaluating 15N/14N and 13C/12C isotope ratio analysis to investigate trophic relationships of elaterid larvae (Coleoptera: Elateridae), Soil Biol. Biochem., 2007, vol. 39, pp. 1023–1030.

    Article  CAS  Google Scholar 

  37. Wehi, P. and Hicks, B., Isotopic fractionation in a large herbivorous insect, the Auckland tree weta, J. Insect Physiol., 2010, vol. 56, pp. 1877–1882.

    Article  CAS  Google Scholar 

  38. Zalesskaya, N.T. and Shileiko, A.A., Skolopendrovye mnogonozhki (Chilopoda, Scolopendromorpha) (Scolopendrid Centipedes (Chilopoda, Scolopendromorpha)), Moscow: Nauka, 1991.

Download references

ACKNOWLEDGMENTS

The authors are grateful to O.N. Bykhalova for her help in organizing work on the territory of the Utrish State Nature Reserve.

Funding

The study of the isotopic composition of invertebrates was carried out with the financial support of the Russian Science Foundation (project no. 19-74-10 104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Korobushkin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Translated by T. Kuznetsova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korobushkin, D.I., Gongalsky, K.B. Variability of Isotope Composition (15N/14N and 13С/12С) in Tissues and Organs of Mediterranean Soil Invertebrates. Arid Ecosyst 12, 181–186 (2022). https://doi.org/10.1134/S207909612202007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207909612202007X

Keywords:

Navigation