Skip to main content
Log in

Estimates of Genetic Introgression, Gene Tree Reticulation, Taxon Divergence, and Sustainability of DNA Barcoding Based on Genetic Molecular Markers

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract—The evidence for the possible impact of gene introgression on species evolution, the evolutionary fate of taxa, including reticulations in phylogenetic trees, and the consistency of the latest molecular genetic data with the main modern paradigm, Neo-Darwinism, have been considered in many studies. This study includes a comparative analysis and assessments of validity of the use of molecular markers for species identification, including an approach proposed by one of the authors for the description of biological diversity in the framework of the global DNA barcoding program. The identification of hybrids and the prevalence of genetic introgression are discussed. There are four main issues in the overview presented. (1) A combination of nDNA and mtDNA markers best suits for the hybrid identification and estimates of genetic introgression or gene flow. (2) The available facts for both nDNA and mtDNA diversity make introgression among many animal and plant taxa obvious, although, even for the wide hybrid zones of Mytilus ex. group edulis, for example, introgression may be quite restricted or asymmetric for a significant part of the area, thus holding at least the “source” taxon (taxa) intact. (3) If we accept that sexually reproducing species in marine and terrestrial areas are introgressed, as is evident for many cases, then we should recognize that the orthodox BSC, which postulates a complete lack of gene flow among species, is inadequate due to the fact that many zoological or taxonomic species have currently not yet reached the stage of biological species. However, they will eventually become definitive biological species in future. This conclusion is supported by the genetic distance, which increases with taxa rank, and by the lowest diversity at the intraspecies level as for single mtDNA genes, for complete mitogenomes, and for nDNA genes. (4) A recent study of fish-taxon divergence by means of the vast BOLD (www.boldsystem.org) database showed that the gene trees for taxa up to the family level are basically monophyletic, and interspecies reticulations are rare for most gene trees. The available data allow us to conclude that molecular evolution and, in particular, genetic divergence in the taxon hierarchy are generally in good agreement with BSC and Neo-Darwinism, forming the theoretical basis for the success of DNA barcoding in the animal world, as well as its applicability for other organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Aliabadian, M. and Nijman, V., Avian hybrids: incidence and geographic distribution of hybridization in birds, Contrib. Zool., 2007, vol. 76, no. 1, pp. 59–61.

    Article  Google Scholar 

  2. Altukhov, Yu.P. and Salmenkova, E.A., The genetic structure of salmon populations, Aquaculture, 1991, vol. 98, pp. 11–40.

    Article  Google Scholar 

  3. Altukhov, Yu.P., Salmenkova, E.A., and Omel’chenko, V.T., Populyatsionnaya genetika lososevykh ryb (Population Genetics of Salmon Fishes), Moscow: Nauka, 1997.

  4. Alves, P.C., Melo-Ferreira, J., Freitas, H., and Boursot, P., The ubiquitous mountain hare mitochondria: multiple introgressive hybridization in hares, genus Lepus, Philos. Trans. R. Soc., B, 2008, vol. 363, pp. 2831–2839.

  5. Antonov, A.S. and Belozerskii, A.N., Comparative analysis of nucleotide composition of deoxyribonucleic acids of some vertebrates and invertebrates, Dokl. Akad. Nauk SSSR, 1961, vol. 138, pp. 1216–1220.

    CAS  Google Scholar 

  6. Antonov, A.S., Miroshnichenko, G.P., and Slyusarenko, A.G., The data on DNA primary structure in the plant systematics, Usp. Sovrem. Biol., 1971, vol. 74, pp. 247–261.

    Google Scholar 

  7. Arnold, M.L., Evolution through Genetic Exchange, New York: Oxford Univ. Press, 1997.

    Google Scholar 

  8. Arnold, M.L., Evolution through Genetic Exchange, New York: Oxford Univ. Press, 2008.

    Google Scholar 

  9. Arnold, M.L. and Emms, S.K., Paradigm lost: natural hybridization and evolutionary innovation, in Endless Forms: Species and Speciation, Howard, D.J. and Berlocher, S.H., Eds., New York: Oxford Univ. Press, 1998, pp. 379–389.

    Google Scholar 

  10. Arnold, M.L. and Fogarty, N.D., Reticulate evolution and marine organisms: the final frontier? Int. J. Mol. Sci., 2009, vol. 10, pp. 3836–3860. https://doi.org/10.3390/ijms10093836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Asmussen, M.A., Arnold, J., and Avise, J.S., Definition and properties of disequilibrium statistics for associations between nuclear and cytoplasmic genotypes, Genetics, 1987, vol. 115, pp. 755–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Avise, J.C., Phylogeography. The History and Formation of Species, Cambridge, MA: Harvard Univ. Press, 2000.

    Google Scholar 

  13. Avise, J.C., Cytonuclear genetic signatures of hybridization phenomena: rationale utility and empirical examples from fishes and other aquatic animals, Rev. Fish Biol. Fish., 2001, vol. 10, pp. 253–263.

    Article  Google Scholar 

  14. Avise, J.C. and Aquadro, C.F., A comparative summary of genetic distances in the vertebrates: pattern and correlations, Evol. Biol., 1982, vol. 15, pp. 151–185.

    Article  Google Scholar 

  15. Avise, J. and Saunders, N.C., Hybridization and introgression among species of sunfish (Lepomis): analysis by mitochondrial DNA and allozyme markers, Genetics, 1984, vol. 108, pp. 237–250.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Avise, J.C. and Wollenberg, K., Phylogenetics and origin of species, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, pp. 7748–7755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bailey, N.T.J., The Mathematical Approach to Biology and Medicine, London: Wiley, 1967.

    Google Scholar 

  18. Balakirev, E.S., Krupnova, T.N., and Ayala, F.J., DNA variation in the phenotypically-diverse brow alga Sacharina japonica, BMC Plant Biol., 2012, vol. 12, pp. 108–126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balakirev, E.S., Romanov, N.S., Mikheev, P.B., and Ayala, F.J., Mitochondrial DNA variation and introgression in Siberian taimen Hucho taimen, PLoS One, 2013, vol. 8, no. 8, p. e71147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barley, D.M., Rana, K., and Immink, A.J., The use of inter-specific hybrids in aquaculture and fisheries, Rev. Fish Biol. Fish., 2001, vol. 10, pp. 325–337.

    Article  Google Scholar 

  21. Barton, N.H. and Hewitt, G.M., Analysis of hybrid zones, Ann. Rev. Ecol. Syst., 1985, vol. 16, pp. 113–148.

    Article  Google Scholar 

  22. Bayne, B.L., Ahrens, M., Allen, S.K., et al., The proposed dropping of the genus Crassostrea for all Pacific cupped oysters and its replacement by a new genus Magallana: a dissenting view, J. Shellfish Res., 2017, vol. 36, no. 3, pp. 545–547.

    Article  Google Scholar 

  23. Berendzen, P.B. and Dimmick, W.W., Phylogenetic relationships of Pleuronectiformes based on molecular evidence, Copeia, 2002, vol. 3, pp. 642–652.

    Article  Google Scholar 

  24. Betancur, R.R. and Orti, G., Molecular evidence for the monophyly of flatfishes (Carangimorpharia, Pleuronectiformes), Mol. Phyl. Evol., 2014, vol. 73, pp. 18–22.

    Article  Google Scholar 

  25. Birky, C.W., Jr., Species detection and identification in sexual organisms using population genetic theory and DNA sequences, PLoS One, 2013, vol. 8, no. 1, p. e52544. https://doi.org/10.1371/journal.pone.0052544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borkin, L.Ya. and Litvinchuk, S.N., Hybridization, speciation, and systematics of the animals, Tr. Zool. Inst., Ross. Akad. Nauk, 2013, suppl. 2, pp. 83–139.

  27. Bringloe, T.T., Cottenie, K., Martin, G.K., and Adamowicz, S.J., The importance of taxonomic resolution for additive beta diversity as revealed through DNA barcoding, Genome, 2016, vol. 59, no. 12, pp. 1130–1140.

    Article  CAS  PubMed  Google Scholar 

  28. Brower, A.V.Z., Delimitation of phylogenetic species with DNA sequences: a critique of Davis and Nixon’s population aggregation analysis, Syst. Biol., 1999, vol. 48, pp. 199–213.

    Article  CAS  PubMed  Google Scholar 

  29. Busack, C.A., Torgaard, J.H., Bannon, M.P., and Gall, G.A.E., An electrophoretic karyotypic and meristic characterization of the Eagle Lake trout, Salmo gairdnery aquilarum, Copeia, 1980, vol. 3, pp. 418–424.

    Article  Google Scholar 

  30. Bush, G.L., Modes of animal speciation, Ann. Rev. Ecol. Syst., 1975, vol. 6, pp. 339–364.

    Article  Google Scholar 

  31. Campton, D.E., Natural hybridization and introgression in fishes. Method of detection and genetic interpretation, in Population Genetics & Fishery Management, Ryman, N. and Utter, F., Eds., Seattle: Washington Sea Grant Program, 1987, pp. 161–192.

    Google Scholar 

  32. Clark, A.G., Natural selection with nuclear and cytoplasmic transmission. I. A deterministic model, Genetics, 1984, vol. 107, pp. 679–701.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Delaney, M.E. and Bloom, S.E., Replication banding patterns in the chromosomes of rainbow trout, J. Hered., 1984, vol. 5, pp. 431–434.

    Article  Google Scholar 

  34. Devlin, R.H. and Nagahama, Y., Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences, Aquaculture, 2002, vol. 208, pp. 191–364.

    Article  CAS  Google Scholar 

  35. Dobzhansky, Th., Evolution, Genetics, and Man, New York: Wiley, 1955.

    Google Scholar 

  36. Drummond, A.K. and Bouckaert, R.R., Bayesian Evolutionary Analysis with BEAST, Cambridge: Cambridge Univ. Press, 2015.

    Book  Google Scholar 

  37. Ferris, S.D., Sage, R.D., Huang, C.-M., et al., Flow of mitochondrial DNA across a species boundary, Proc. Natl. Acad. Sci. U.S.A., 1983, vol. 80, pp. 2290–2294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fitzpatrick, B.M., Rates of evolution of hybrid unviability in birds and mammals, Evolution, 2004, vol. 58, pp. 1865–1870.

    Article  PubMed  Google Scholar 

  39. Fong, J.J. and Chen, T.-H., DNA evidence for the hybridization of wild turtles in Taiwan: possible genetic pollution from trade animals, Conserv. Genet., 2010, vol. 11, no. 5, pp. 2061–2066.

    Article  Google Scholar 

  40. Frolov, S.V., Izmenchivost’ i evolyutsiya kariotipa lososevykh ryb (Variability and Evolution of Karyotype of Salmon Fishes), Vladivostok: Dal’nauka, 2000.

  41. Fujisawa, T. and Barraclough, T.G., Delimiting species using single-locus data and the generalized mixed Yule coalescent approach: a revised method and evaluation on simulated data sets, Syst. Biol., 2013, vol. 62, pp. 707–724.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gardner, J.P.H. and Skibinski, D.O.F., Historical and size-dependent genetic variation in hybrid mussel populations, Heredity, 1988, vol. 61, pp. 93–105.

    Article  Google Scholar 

  43. Genovart, M., Natural hybridization and conservation, Biodiversity Conserv., 2008, vol. 18, no. 6, pp. 1435–1439.

    Article  Google Scholar 

  44. Gerber, A.S., Tibbets, C.A., and Dowling, T.E., The role of introgressive hybridization in the evolution of the Gila robusta complex (Teleostei: Cyprinidae), Evolution, 2001, vol. 55, no. 10, pp. 2028–2039.

    Article  CAS  PubMed  Google Scholar 

  45. Glemet, H., Blier, P., and Bernatchez, L., Geographical extent of Arctic char (Salvelinus alpinus) mtDNA introgression in brook char populations (S. fontinalis) from Eastern Quebec Canada, Mol. Ecol., 1998, vol. 7, no. 12, pp. 1655–1662.

    Article  Google Scholar 

  46. Grant, P.R. and Grant, R.B., Hybridization of bird species, Science, 1992, vol. 256, pp. 193–197.

    Article  CAS  PubMed  Google Scholar 

  47. Greenfield, D.W. and Greenfield, T., Introgressive hybridization between Gila orcutti and Hesperolecus symmetricus (Pisces: Cyprinidae) in the Guyama River basin, California. I. Meristics, morphometrics, and breeding, Copeia, 1972, vol. 4, pp. 849–859.

    Article  Google Scholar 

  48. Greenfield, D.W., Abdel-Hameed, F., Deckert, G.D., and Finn, R.R., Hybridization between Chrosomus erythrogaster and Notropis cornutus (Pisces: Cyprinidae), Copeia, 1973, vol. 1, pp. 54–60.

    Article  Google Scholar 

  49. Hanzawa, N., Taniguchi, N., and Shinzawa, H., Genetic Markers of the Artificial Hybrids between Tribolodon hakonensis and T. sp. (Ukeguchi-Ugui), Otsuchi Mar. Res. Cent. Rep. Univ. Tokyo, 1984, vol. 10, pp. 11–17.

  50. Heath, D.A., Rawson, P.D., and Hilbish, T.J., PCR-based nuclear markers identify alien blue mussel (Mytilus spp.) genotypes on the west coast of Canada, Can. J. Fish. Aquat. Sci., 1995, vol. 52, pp. 2621–2627.

    Article  CAS  Google Scholar 

  51. Hebert, P.D.N., Cywinska, A., and Ball, S.L., Biological identifications through DNA barcodes, Proc. R. Soc. London, Ser. B, 2003a, vol. 270, no. 1512, pp. 313–321.

    Article  CAS  Google Scholar 

  52. Hebert, P.D.N., Ratnasingham, S., and De Waard, J.R., Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species, Proc. R. Soc. London, Ser. B, 2003b, vol. 270, suppl. 1, pp. S96–S99.

    CAS  Google Scholar 

  53. Hedges, S.B., Marin, J., Suleski, M., Madeline, P., and Kumar, S., Tree of life reveals clock-like speciation and diversification, Mol. Biol. Evol., 2015, vol. 32, pp. 835–845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hewitt, G.M., Quaternary phylogeography: the roots of hybrid zones, Genetica, 2011, vol. 139, no. 5, pp. 617–638.

    Article  PubMed  Google Scholar 

  55. Hubbs, C.L., Hybridization between fish species in nature, Syst. Zool., 1955, vol. 4, pp. 1–20.

    Article  Google Scholar 

  56. Hubbs, C., Kuehne, R.A., and Ball, J.C., The fishes of upper Guadelupe River, Texas, Texas J. Sci., 1953, vol. 5, pp. 216–244.

    Google Scholar 

  57. Hubby, J.L. and Throckmorton, D.H., Protein differences of Drosophila. II. Comparative species genetics and evolutionary problems, Genetics, 1965, vol. 52, pp. 203–215.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Imoto, J.M., Saitoh, K., Sasaki, T., et al., Phylogeny and biogeography of highly diverged freshwater fish species (Leuciscinae, Cyprinidae, Teleostei) inferred from mitochondrial genome analysis, Gene, 2013, vol. 514, no. 2, pp. 112–124.

    Article  CAS  PubMed  Google Scholar 

  59. Inoue, K., Takeuchi, Y., Miki, D., and Odo, S., Mussel adhesive plaque protein gene is a novel member of epidermal growth factor like gene family, J. Biol. Chem., 1995, vol. 270, pp. 6698–6701.

    Article  CAS  PubMed  Google Scholar 

  60. Joly, S., JML: testing hybridization from species tree, Mol. Ecol. Res., 2012, vol. 12, pp. 179–184.

    Article  Google Scholar 

  61. Kafanov, A.I., Subfamily Mytilinae Rafinesque, 1815 (Bivalvia: Mytilidae) in Cainozoe of Northern Pacific, in Fauna i raspredelenie mollyuskov: severnaya Patsifika i Polyarnyi bassein (Fauna and Distribution of Mollusks: Northern Pacific and Polar Basin), Vladivostok: Dal’nevost. Nauchn. Tsentr, Akad. Nauk SSSR, 1987, pp. 65–103.

  62. Kartavtsev, Yu.Ph., Molekulyarnaya evolyutsiya i populyatsionnaya genetika (Molecular Evolution and Population Genetics), Vladivostok: Dal’nevost. Gos. Univ., 2005.

  63. Kartavtsev, Yu.Ph., Molekulyarnaya evolyutsiya i populyatsionnaya genetika (Molecular Evolution and Population Genetics), Vladivostok: Dal’nevost. Gos. Univ., 2009a.

  64. Kartavtsev, Y.Ph., Analysis of sequence diversity at mitochondrial genes on different taxonomic levels: applicability of DNA based distance data in genetics of speciation and phylogenetics, in Genetic Diversity, Mahoney, C.L. and Springer, D.A., Eds., New York: Nova Science, 2009b, ch. 1, pp. 1–50.

    Google Scholar 

  65. Kartavtsev, Y.Ph., Sequence divergence at mitochondrial genes in animals. Applicability of DNA data in genetics of speciation, phylogenetics and molecular ecology, Mar. Genomics, 2011a, vol. 49, pp. 71–81.

    Article  Google Scholar 

  66. Kartavtsev, Y.Ph., Sequence divergence at Co-1 and Cyt-b mtDNA on different taxonomic levels and genetics of speciation in animals, Mitochondrial DNA, 2011b, vol. 2, no. 3, pp. 55–65.

    Article  CAS  Google Scholar 

  67. Kartavtsev, Y.Ph., Sequence diversity at Cyt-b and Co-1 mtDNA genes in animal taxa proved Neo-Darwinism, J. Phyl. Evol. Biol., 2013a, vol. 1, no. 4, pp. 1–5. http://dx.org/10.4172/2329-9002.1000120.

    Google Scholar 

  68. Kartavtsev, Y.Ph., Some current concerns of Neo-Darwinism: gene introgression throughout a species border, J. Phyl. Evol. Biol., 2013b, vol. 1, no. 5, pp. 1–4. http://dx.org/10.4172/2329-9002.1000e107.

    Google Scholar 

  69. Kartavtsev, Yu.Ph., Genetic divergence of species and other taxa. Geographical speciation and the genetic paradigm of Neo-Darwinism in action, Usp. Sovrem. Biol., 2013c, no. 5, pp. 419–451.

  70. Kartavtsev, Y.Ph., Molecular evolution and population genetics, in Molecular Evolution and Population Genetics for Marine Biologists, Boca Raton, Fl: CRS Press, 2015.

    Book  Google Scholar 

  71. Kartavtsev, Y.P., Barcode index number, taxonomic rank and modes of speciation: examples from fish, Mitochondrial DNA, Part A, 2018, vol. 29, no. 4, pp. 535–542.

    Article  CAS  Google Scholar 

  72. Kartavtsev, Yu.Ph. and Lee, J.-S., Analysis of nucleotide diversity at the cytochrome b and cytochrome oxidase 1 genes at the population, species, and genus levels, Russ. J. Genet., 2006, vol. 42, no. 4, pp. 341–362.

    Article  CAS  Google Scholar 

  73. Kartavtsev, Y.P., Sviridov, V.V., Sasaki, T., and Hanzawa, N., Genetic divergence of far eastern dace belonging to the genus Tribolodon (Pisces, Cyprinidae) and closely related taxa: some insights in taxonomy and speciation, Russ. J. Genet., 2002, vol. 38, no. 11, pp. 1518–1531.

    Article  Google Scholar 

  74. Kartavtsev, Y.Ph., Chichvarkhin, A.Y., Kijima, A., et al., Allozyme and morphometric analysis of two common mussel species of Mytilus genus (Mollusca, Mytilidae) in Korea, Japan and Russia waters, Kor. J. Genet., 2005, vol. 27, no. 4, pp. 289–306.

    CAS  Google Scholar 

  75. Kartavtsev, Y.P., Park, T.-J., Vinnikov, K.A., et al., Cytochrome b (Cyt-b) gene sequences analysis in six flatfish species (Pisces, Pleuronectidae), with phylogenetic and taxonomic insights, Mar. Biol., 2007, vol. 152, no. 4, pp. 757–773.

    Article  CAS  Google Scholar 

  76. Kartavtsev, Y.Ph., Katolikova, M.V., Sharina, S.N., et al., A population genetic study of the hybrid zone of Mytilus trossulus Gould, 1850 and an introduced species, M. galloprovincialis Lamarck, 1819 (Bivalvia: Mytilidae) in Peter the Great Bay in the Sea of Japan, Russ. J. Mar. Biol., 2014, vol. 40, no. 3, pp. 208–216.

    Article  Google Scholar 

  77. Kartavtsev, Y.Ph., Sharina, S.N., Saitoh, K., et al., Phylogenetic relationships of Russian Far Eastern flatfish (Pleuronectiformes, Pleuronectidae) based on two mitochondrial gene sequences, Co-1 and Cyt-b, with inferences in order phylogeny using complete mitogenome data, Mitochondrial DNA, 2016, vol. 27, no. 1, pp. 667–678. https://doi.org/10.3109/19401736.2014.913139

    Article  CAS  PubMed  Google Scholar 

  78. Kartavtsev, Yu.Ph., Batishcheva, N.M., Bogutskaya, N.G., et al., Molecular systematics research, DNA barcoding of Altai Osmans, Oreoleuciscus (Pisces, Cyprinidae, Leuciscinae), and nearest relatives, inferred from sequences of cytochrome b (Cyt-b), cytochrome oxidase c (Co-1), and complete mitochondrial genome, Mitochondrial DNA, Part A, 2017, vol. 28, no. 4, pp. 502–517.

    Article  CAS  Google Scholar 

  79. Kartavtsev, Yu.Ph., Sharina, S.N., Chichvarkhin, A.Yu., Chichvarkhina, O.V., Masalkova, N.A., Lutaenko, K.A., and Oliveira, C., Genetic divergence of mussels (Mollusca, Mytilidae) based on the 28S rRNA, 18S rRNA, and H3 nuclear gene sequences, Russ. J. Genet., 2018a, vol. 54, no. 6, pp. 652–669.

    Article  CAS  Google Scholar 

  80. Kartavtsev, Y.Ph., Masalkova, N.A., and Katolikova, M.V., Genetic and morphometric variability in the settlements of two mussel species (Mytilus ex. gr. edulis), M. trossulus, and M. galloprovincialis, in North-West Japan Sea, J. Shellfish Res., 2018b, vol. 37, no. 1, pp. 1–17.

    Article  Google Scholar 

  81. Katolikova, M., Khaitov, V., and Väinölä, R., Genetic, ecological and morphological distinctness of the blue mussels Mytilus trossulus Gould and M. edulis L. in the White Sea, PLoS One, 2016, vol. 11, pp. 1–25.

    Article  CAS  Google Scholar 

  82. Keck, B.P. and Near, T.J., Geographic and temporal aspects of mitochondrial replacement in Nothonotus darters (Teleostei: Percidae: Etheostomatinae), Evolution, 2009, vol. 64, pp. 1410–1428.

    PubMed  Google Scholar 

  83. Kijewska, A., Burzynski, A., and Wenne, R., Molecular identification of European flounder (Platichthys flesus) and its hybrids with European plaice (Pleuronectes platessa), ICES J. Mar. Sci., 2009, vol. 66, no. 5, pp. 902–906.

    Article  Google Scholar 

  84. Kirpichnikov, V.S., Geneticheskie osnovy selektsii ryb (Genetic Principles of Fish Breeding), Leningrad: Nauka, 1979.

  85. Kondrashov, A.S., Yampolsky, L.Y., and Shabalina, S.A., On the sympatric origin of species by means of natural selection, in Endless Forms: Species and Speciation, Howarth, D.J. and Berlocher, S.H., Eds., Oxford: Oxford Univ. Press, 1998, pp. 90–98.

    Google Scholar 

  86. Mayden, R.L., Chen, W.-J., Bart, H.L., et al., Reconstructing the phylogenetic relationships of the earth’s most diverse clade of freshwater fishes—order Cypriniformes (Actinopterygii: Ostariophysi): a case study using multiple nuclear loci and the mitochondrial genome, Mol. Phyl. Evol., 2009, vol. 51, no. 3, pp. 500–514.

    Article  CAS  Google Scholar 

  87. Mayer, W.E., Tichy, H., and Klein, J., Phylogeny of African cichlid fishes as revealed by molecular markers, Heredity, 1998, vol. 80, no. 6, pp. 702–714.

    Article  CAS  PubMed  Google Scholar 

  88. Mayr, E., Animal Species and Evolution, Cambridge: Belknap, 1968.

    Google Scholar 

  89. Mayr, E., Process of speciation in animals, in Mechanisms of Speciation, Barigozzi, C., Ed., New York: Alan R. Liss, 1982, pp. 1–20.

    Google Scholar 

  90. McCusker, M.R., Denti, D., van Guelpen, L., et al., Barcoding Atlantic Canada’s commonly encountered marine fishes, Mol. Ecol. Res., 2013, vol. 13, pp. 177–188.

    Article  CAS  Google Scholar 

  91. McGuire, J.A., Linkem, C.W., Koo, M.S., et al., Mitochondrial introgression and incomplete lineage sorting through space and time: phylogenetics of crotaphytid lizards, Evolution, 2007, vol. 61, pp. 2879–2897.

    Article  CAS  PubMed  Google Scholar 

  92. Miya, M., Takeshima, H., Endo, H., et al., Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences, Mol. Phyl. Evol., 2003, vol. 26, no. 1, pp. 121–138.

    Article  CAS  Google Scholar 

  93. Miya, M., Saitoh, K., Wood, R., et al., New primers for amplifying and sequencing the mitochondrial ND4/ND5 gene region of the Cypriniformes (Actinopterygii: Ostariophysi), Ichthyol. Res., 2006, vol. 53, pp. 75–81.

    Article  Google Scholar 

  94. Nanney, D.L., Genes and phenes in Tetrahymena, Bioscience, 1982, vol. 32, no. 10, pp. 783–788.

    Article  Google Scholar 

  95. Nedunoori, A., Turanov, S.V., and Kartavtsev, Y.Ph., Fish product mislabeling identified in the Russian Far East using DNA barcoding, Gene Rep., 2017, vol. 8, pp. 144–149.

    Article  Google Scholar 

  96. Nei, M., Molecular Evolutionary Genetics, New York: Columbia Univ. Press, 1987.

    Book  Google Scholar 

  97. Nei, M. and Kumar, S., Molecular Evolution and Phylogenetics, New York: Oxford Univ. Press, 2000.

    Google Scholar 

  98. Nelson, J.S., Hybridization between two cyprinid fishes, Hybopes plumbea and Rhinichthys cataractae, in Alberta, Can. J. Zool., 1966, vol. 44, pp. 663–968.

    Article  Google Scholar 

  99. Nelson, J.S., Occurrence of hybrids between longnose sucker (Catastomus catastomus) and white sucker (C. comer soni) in upper Kananaskis Reservoir, Alberta, J. Fish. Res. Board Can., 1973, vol. 30, pp. 557–560.

    Article  Google Scholar 

  100. Nevado, B., Koblmüller, S., Sturmbauer, C., et al., Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish, Mol. Ecol., 2009, vol. 18, pp. 4240–4255.

    Article  CAS  PubMed  Google Scholar 

  101. Nevado, B., Fazalova, V., Backeljau, T., et al., Repeated unidirectional introgression of nuclear and mitochondrial DNA between four congeneric Tanganyikan cichlids, Mol. Biol. Evol., 2011, vol. 28, no. 8, pp. 2253–2267.

    Article  CAS  PubMed  Google Scholar 

  102. Oleinik, A.G., Molecular evolution of chars of genus Salvelinus: phylogenetic and phylogeographic aspects, Extended Abstract of Doctoral (Biol.) Dissertation, Vladivostok: Inst. Mar. Biol., Far Eastern Branch, Russ. Acad. Sci., 2013.

  103. Oleinik, A.G. and Skurikhina, L.A., Mitochondrial DNA diversity and relationships of endemic charrs of the genus Salvelinus from lake Kronotskoye (Kamchatka Peninsula), Hydrobiologia, 2010, vol. 650, no. 1, pp. 145–159.

    Article  CAS  Google Scholar 

  104. Panov, E.N., Gibridizatsiya i etologicheskaya izolyatsiya u ptits (Hybridization and Ethological Isolation of Birds), Moscow: Nauka, 1989.

  105. Pardo, B.G., Machordom, A., Foresti, F., et al., Mitochondrial genomics of ostariophysan fishes: perspectives on phylogeny and biogeography, J. Mol. Evol., 2003, vol. 56, pp. 464–472.

    Article  CAS  Google Scholar 

  106. Pardo, B.G., Machordom, A., Foresti, F., et al., Phylogenetic analysis of flatfish (order Pleuronectiformes) based on mitochondrial 16S rDNA sequences, Sci. Mar., 2005, vol. 69, pp. 531–543. https://doi.org/10.3989/scimar.2005.69n4531

  107. Penney, R.W. and Hart, M.J., Distribution, genetic structure, and morphometry of Mytilus edulis and M. trossulus within a mixed species zone, J. Shellfish Res., 1999, vol. 18, no. 2, pp. 367–374.

    Google Scholar 

  108. Pereira, L.H.G., Hanner, R., Foresti, F., and Oliveira, C., Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genetics, 2013, vol. 14, no. 20, pp. 1–14.

    Article  CAS  Google Scholar 

  109. Phillips, R.B. and Zajicek, K.D., Q band chromosomal banding polymorphisms in lake trout (Salvelinus namaycush), Genetics, 1982, vol. 101, pp. 227–234.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Phillips, R.B., Zajicek, K.D., and Utter, F.M., Q band chromosome polymorphism in Chinook salmon (Oncorhynchus tshawytscha), Copeia, 1985, vol. 2, pp. 273–278.

    Article  Google Scholar 

  111. Plotner, J., Uzzell, T., Beerli, P., et al., Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs, J. Evol. Biol., 2008, vol. 21, pp. 668–681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Podlesnykh, A.V., Brykov, V.A., and Kukhlevsky, A.D., Unstable linkage of molecular markers with sex determination gene in pacific salmon (Oncorhynchus spp.), J. Hered., 2017, vol. 108, no. 3, pp. 328–333.

    Article  CAS  PubMed  Google Scholar 

  113. Powell, J.R., Interspecific cytoplasmic gene flow in the absence of nuclear gene flow: evidence from Drosophila, Proc. Natl. Acad. Sci. U.S.A., 1983, vol. 80, pp. 492–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Prager, E.M. and Wilson, A.C., Slow evolutionary loss of the potential for interspecific hybridization in birds: a manifestation of slow regulatory evolution, Proc. Natl. Acad. Sci. U.S.A., 1975, vol. 72, pp. 200–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ratnasingham, S. and Hebert, P.D.N., BOLD: the barcode of life data system (http://www.barcodinglife.org), Mol. Ecol. Notes, 2007, vol. 7, no. 3, pp. 355–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Rawson, P.D. and Hilbish, T.J., Evolutionary relationships among the male and female mitochondrial DNA lineages in the Mytilus edulis species complex, Mol. Biol. Evol., 1995, vol. 12, no. 5, pp. 893–901.

    CAS  PubMed  Google Scholar 

  117. Rawson, P.D., Secor, C.L., and Hilbish, T.J., The effect of natural hybridization on the regulation of doubly uniparental mtDNA inheritance in blue mussels (Mytilus spp.), Genetics, 1996, vol. 144, pp. 241–248.

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Rawson, P.D., Argawal, V., and Hilbish, T.J., Hybridization between the blue mussels Mytilus galloprovincialis and M. trossulus along the pacific coast of North America: evidence for limited introgression, Mar. Biol., 1999, vol. 134, no. 1, pp. 201–211.

    Article  Google Scholar 

  119. Redin, A.D. and Kartavtsev, Y.Ph., Molecular phylogeny of Russian Far Eastern flatfish (Pleuronectiformes, Pleuronectidae) based on sequences of mitochondrial genes, Proc. Int. Symp. “Modern Achievements in Population, Evolutionary, and Ecological Genetics,” Vladivostok, Vostok Marine Biological Station, September 3–8, 2017, Vladivostok, 2017, pp. 34–35.

  120. Roberts, D.G., Gray, C.A., and West, D.J., Marine genetic swamping: hybrids replace an obligately estuarine fish, Mol. Ecol., 2010, vol. 19, pp. 508–520.

    Article  PubMed  Google Scholar 

  121. Roje, D.M., Incorporating molecular phylogenetics with larval morphology while mitigating the effects of substitution saturation on phylogeny estimation: a new hypothesis of relationships for the flatfish family Pleuronectidae (Percomorpha: Pleuronectiformes), J. Mol. Phyl. Evol., 2010, vol. 56, pp. 586–600.

    Article  Google Scholar 

  122. Saarman, N.P. and Pogson, G.H., Introgression between invasive and native blue mussels (genus Mytilus) in the central California hybrid zone, Mol. Ecol., 2015, vol. 24, no. 18, pp. 4723–4738.

    Article  CAS  PubMed  Google Scholar 

  123. Saitoh, K., Sado, T., Mayden, R.L., et al., Mitogenomic evolution and interrelationships of the Cypriniformes (Actinopterygii: Ostariophysi): the first evidence toward resolution of higher-level relationships of the world’s largest freshwater fish clade based on 59 whole mitogenome sequences, J. Mol. Evol., 2006, vol. 63, pp. 826–841.

    Article  CAS  PubMed  Google Scholar 

  124. Saitoh, K., Chen, W.-J., and Mayden, R.L., Extensive hybridization and tetrapolyploidy in spined loach fish, Mol. Phyl. Evol., 2010, vol. 56, pp. 1001–1010.

    Article  CAS  Google Scholar 

  125. Sakai, H., Ito, Y., Shedko, S.V., et al., Phylogenetic and taxonomic relationships of northern Far Eastern phoxinin minnows, Phoxinus and Rhynchocypris (Pisces, Cyprinidae), as inferred from allozyme and mitochondrial 16S rRNA sequence analyses, Zool. Sci., 2006, vol. 23, pp. 323–331.

    Article  CAS  PubMed  Google Scholar 

  126. Sasaki, T., Kartavtsev, Y.P., Uematsu, T., et al., Phylogenetic independence of Far Eastern Leuciscinae (Pisces: Cyprinidae) inferred from mitochondrial DNA analysis, Gene Gen. Syst., 2007, vol. 82, pp. 329–340.

    Article  CAS  Google Scholar 

  127. Schwartz, F.J., World Literature to Fish Hybrids With an Analyses by Family, Species, and Hybrid, Seattle, Wash: U.S. Dep. Commerce, Natl. Ocean. Atmos. Admin., 1972, vol. 3.

    Google Scholar 

  128. Schwartz, F.J., World literature on to fish hybrids, with an analysis by family, species and hybrid, in NOAA Technical Report NMFS-750, Seattle, Wash: U.S. Dep. Commerce, Natl. Ocean. Atmos. Admin., 1981, suppl. 1.

  129. Seehausen, O., Hybridization and adaptive radiation, Trends Ecol. Evol., 2004, vol. 19, pp. 198–207.

    Article  PubMed  Google Scholar 

  130. Semina, A.V., Polyakova, N.E., and Brykov, V.A., Genetic analysis identifies a cryptic species of Far Eastern daces of the genus Tribolodon, Dokl. Biol. Sci., 2006, vol. 407, no. 1, pp. 173–175.

    Article  CAS  PubMed  Google Scholar 

  131. Setzer, P.Y.V., An analysis of natural hybrid swarm by means of chromosome morphology, Trans. Am. Fish. Soc., 1970, vol. 99, pp. 139–146.

    Article  Google Scholar 

  132. Sharina, S.N. and Kartavtsev, Yu.Ph., Phylogenetic analysis of flatfish (Teleostei, Pleuronectiformes) based on the investigation of nucleotide sequences of cytochrome oxidase 1 gene (Co-1), Russ. J. Genet., 2010, vol. 46, no. 3, pp. 401–407.

    Article  CAS  Google Scholar 

  133. Shneer, V.S. and Rodionov, A.V., Plant DNA barcodes, Usp. Sovrem. Biol., 2018, vol. 138, no. 6, pp. 531–537.

    Google Scholar 

  134. Simon, R.C. and Noble, R.E., Hybridization in Oncorhynchus (Salmonidae). I. Viability and inheritance in artificial crosses of chum and pink salmon, Trans. Am. Fish. Soc., 1968, vol. 97, pp. 109–118.

    Article  Google Scholar 

  135. Sites, J.W. and Marshall, J.C., Operational criteria for delimiting species, Ann. Rev. Ecol. Evol. Syst., 2004, vol. 35, pp. 199–227.

    Article  Google Scholar 

  136. Skibinski, D.O.F., Beardmore, J.A., and Cross, T.F., Aspects of the population genetics of Mytilus (Mytilidae: Mollusca) in the British Isles, Biol. J. Linn. Soc., 1983, vol. 19, pp. 173–183.

    Article  Google Scholar 

  137. Skurikhina, L.A., Kartavtsev, Yu.F., Chichvarkhin, A.Yu., and Pan’kova, M.V., Study of two species of mussels, Mytilus trossulus and Mytilus galloprovincialis (Bivalvia, Mytilidae), and their hybrids in Peter the Great Bay of the Sea of Japan with the use of PCR markers, Russ. J. Genet., 2001, vol. 37, no. 12, pp. 1448–1451.

    Article  CAS  Google Scholar 

  138. Smietanka, B., Burzynski, A., Hummel, H., and Wenne, R., Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages, Heredity, 2014, vol. 113, pp. 250–258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Smith, G.R., Introgression in fishes: significance for paleontology, cladistics, and evolutionary rates, Syst. Biol., 1992, vol. 41, no. 1, pp. 41–57.

    Article  Google Scholar 

  140. Sneath, P.H. and Sokal, R.R., Numerical Taxonomy, San Francisco: W.H. Freeman, 1973.

    Google Scholar 

  141. Spolsky, C. and Uzzell, T., Natural interspecies transfer of mitochondrial DNA in amphibians, Proc. Natl. Acad. Sci. U.S.A., 1984, vol. 81, pp. 5802–5805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. STATISTICA (data analysis software system), version 6, StatSoft, 2001. http://www.statsoft.com.

  143. Steinke, D., Zemlak, T.S., Hebert, P.D.N., and Adamowicz, S.A., DNA barcoding of Pacific Canada’s fishes, Mar. Biol., 2009, vol. 156, pp. 2641–2647.

    Article  Google Scholar 

  144. Stevenson, M.M. and Buchanon, T.M., An analysis of hybridization between the cyprinodont fishes, Cyprinodon variegates and C. elegans, Copeia, 1973, vol. 4, pp. 682–692.

    Article  Google Scholar 

  145. Stoeckle, M.Y. and Thaler, D.S., Why should mitochondria define species? Hum. Evol., 2018, vol. 33, nos. 1–2, pp. 1–30.

  146. STRUCTURE Software. http://pritch.bsd.uchicago.edu/ structure.html.

  147. Suzuki, H., Yasuda, S.P., Sakaizumi, M., et al., Differential geographic patterns of mitochondrial DNA variation in two sympatric species of Japanese wood mice, Apodemus speciosus and A. argenteus, Genes Genet. Syst., 2004, vol. 79, pp. 165–176.

    Article  CAS  PubMed  Google Scholar 

  148. Suzuki, H., Filippucci, M.G., Chelomina, G.N., et al., A biogeographic view of Apodemus in Asia and Europe inferred from nuclear and mitochondrial gene sequences, Biochem. Genet., 2008, vol. 46, nos. 5–6, pp. 329–346.

  149. Takahata, N. and Slatkin, M., Mitochondrial gene flow, Proc. Natl. Acad. Sci. U.S.A., 1984, vol. 81, pp. 1764–1767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tamura, K., Stecher, G., Peterson, D., et al., MEGA6: molecular evolutionary genetics analysis version 6.0, Mol. Biol. Evol., 2013, vol. 30, no. 12, pp. 2725–2729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Tateno, Y., Nei, M., and Tajima, F., Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species, J. Mol. Evol., 1982, vol. 18, pp. 387–404.

    Article  CAS  PubMed  Google Scholar 

  152. Templeton, A.R., Mechanisms of speciation—a population genetic approach, Ann. Rev. Ecol. Syst., 1981, vol. 12, pp. 23–48.

    Article  Google Scholar 

  153. Templeton, A.R., Species and speciation: geography, population structure, ecology, and gene trees, in Endless Forms: Species and Speciation, Howard, D.J. and Berlocher, S.H., Eds., Oxford: Oxford Univ. Press, 1998, pp. 32–43.

    Google Scholar 

  154. Timofev-Resovskii, M.V., Vorontsov, N.N., and Yablokov, A.V., Kratkii ocherk teorii evolyutsii (Brief Description of Evolution Theory), Moscow: Nauka, 1977.

  155. Turanov, S.V., Kartavtsev, Yu.Ph., Lipinsky, V.V., et al., DNA-barcoding of perch-like fishes (Actinopterygii: Perciformes) from far-eastern seas of Russia with taxonomic remarks for some groups, Mitochondrial DNA, 2014, vol. 40, no. 6, pp. 447–454. https://doi.org/10.3109/19401736.2014.945525

    Article  CAS  Google Scholar 

  156. Turanov, S.V., Kartavtsev, Yu.Ph., Lee, Y.-H., and Jeong, D., Molecular phylogenetic reconstruction and taxonomic investigation of eelpouts (Cottoidei: Zoarcales) based on Co-1 and Cyt-b mitochondrial genes, Mitochondrial DNA, 2016, vol. 28, pp. 547–557. https://doi.org/10.3109/24701394.2016.1155117

    Article  CAS  PubMed  Google Scholar 

  157. Turner, G.F., Seehausen, O., Knight, M.E., et al., How many species of cichlid fishes are there in African lakes? Mol. Ecol., 2001, vol. 10, no. 3, pp. 793–806.

    Article  CAS  PubMed  Google Scholar 

  158. Väinölä, R. and Strelkov, P., Mytilus trossulus in Northern Europe, Mar. Biol., 2011, vol. 58, pp. 815–833.

  159. Vasil’ev, V.P., Evolyutsionnaya kariologiya ryb (Evolutionary Karyology of Fishes), Moscow: Nauka, 1985.

  160. Vinnikiov, K.A., Thomson, R.C., and Munroe, T.A., Revised classification of the righteye flounders (Teleostei: Pleuronectidae) based on multilocus phylogeny with complete taxon sampling, Mol. Phyl. Evol., 2018, vol. 125, pp. 147–162. https://doi.org/10.1016/j.ympev.2018.03.01410.1016/j.ympev.2018.03.014

    Article  Google Scholar 

  161. Wang, J., Kuang, Y.Y., Tong, G.X., and Yin, J.H., Genetics analysis on incompatibility of intergeneric hybridizations between Hucho taimen (♂) and Brachymystax lenok (♀) by using 30 polymorphic SSR markers, J. Fish. Sci. China, 2011, vol. 3, pp. 547–555.

    Google Scholar 

  162. Wiens, J.J., Kuczynski, C.A., and Stephens, P.R., Discordant mitochondrial and nuclear gene phylogenies in emydid turtles: implications for speciation and conservation, Biol. J. Linn. Soc., 2010, vol. 99, pp. 445–461.

    Article  Google Scholar 

  163. Xu, L.X., Kuang, Y.Y., Tong, G.X., et al., An analysis on genetic constitution of Hucho taimen, Brachymystax lenok, and hybrids (Hucho taimen [female] × Brachymystax lenok [male]) by SRAP markers, Acta Agric. Univ. Jiangxiensis, 2011, vol. 33, pp. 1187–1194.

    CAS  Google Scholar 

  164. Yonekawa, H., Moriwaki, K., Gotoh, O., et al., Evolutionary relationships among five subspecies of Mus musculus based on restriction enzyme cleavage patterns of mitochondrial DNA, Genetics, 1981, vol. 98, pp. 801–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  165. Yonekawa, H., Tsuda, K., Tsuchia, K., et al., Genetic diversity, geographic distribution and evolutionary relationships of Mus musculus subspecies based on polymorphism of mitochondrial DNA, in Problemy evolyutsii (Problems of Evolution), Kryukov, A.P. and Yakimenko, L.V., Eds., Vladivostok: Dal’nauka, 2000, pp. 90–108.

  166. Yang, L., Sado, T., Hirt, M.V., et al., Phylogeny and polyploidy: resolving the classification of Cyprinine 4 fishes (Teleostei: Cypriniformes), Mol. Phyl. Evol., 2015, vol. 85, pp. 97–116.

    Article  Google Scholar 

  167. Zbawicka, M., Wenne, R., and Burzyński, A., Mitogenomics of recombinant mitochondrial genomes of Baltic Sea Mytilus mussels, Mol. Genet. Genomics, 2014, vol. 289, pp. 1275–1287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Zbawicka, M., Trucco, M.I., and Wenne, R., Single nucleotide polymorphisms in native South American Atlantic coast populations of smooth shelled mussels: hybridization with invasive European Mytilus galloprovincialis, Genet., Sel., Evol., 2018, vol. 50, p. 5. https://doi.org/10.1186/s12711-018-0376-z

    Article  Google Scholar 

  169. Zhang, J., Kapli, P., Pavlidis, P., and Stamatakis, A., A general species delimitation method with applications to phylogenetic placements, Bioinformatics, 2013, vol. 29, no. 22, pp. 2869–2876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhokhova, E.V., Rodionov, A.V., Povydysh, M.N., et al., Use of DNA barcoding and DNA fingerprinting for analysis of the quality of medicinal plant materials and medicinal herbal preparations, Usp. Sovrem. Biol., 2019, no. 1 (in press).

  171. Zhuravlev, Y.N. and Avetisov, V.A., The definition of life in the context of its origin, Biogeosciences, 2006, vol. 3, pp. 281–291.

    Article  CAS  Google Scholar 

  172. Zuckerkandl, E. and Pauling, L., Molecules as documents of evolutionary history, J. Theor. Biol., 1965, vol. 8, no. 2, pp. 357–366.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The study was supported by a grant of the Russian Science Foundation (Agreement no. 14-50-00034) in the field of molecular systematics of marine organisms, as well as a grant of the Russian Foundation for Basic Research 15-29-02456-ofi for research on the genetic basis of biodiversity, and a grant of the Far East Branch of the Russian Academy of Sciences, no. 18-4-040 for the Comprehensive Study of the Biodiversity of Fishes and Invertebrates Based on DNA Barcoding, Development, and Support of Databases and Biobanking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ph. Kartavtsev.

Ethics declarations

Conflict of interest. The authors declare that they have no conflict of interest.

Statement of the welfare of animals. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by V. Mittova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kartavtsev, Y.P., Redin, A.D. Estimates of Genetic Introgression, Gene Tree Reticulation, Taxon Divergence, and Sustainability of DNA Barcoding Based on Genetic Molecular Markers. Biol Bull Rev 9, 275–294 (2019). https://doi.org/10.1134/S2079086419040042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086419040042

Navigation