Skip to main content
Log in

Tropisms of Underground Shoots—Stolons and Rhizomes

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The review discusses current problems in research on growth-related plant movements (phototropism and gravitropism). The existing data on physiological and molecular mechanisms of tropisms in shoots and roots are presented. Special attention is paid to underground shoots (stolons and rhizomes), which grow transversely to gravity; this phenomenon is called diagravitropism. Phytochrome control is shown to play a role in the maintenance of horizontal growth of stolons and rhizomes, and the physiological mechanisms of the phototropism and diagravitropism are discussed. The switch from diatropic to orthotropic (vertical) growth of the apexes of underground shoots was shown to be dependent on the balance of carbohydrates and phytohormones. The prospects for further studies of the mechanisms of growth orientation and morphogenesis of underground diagravitropic shoots are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adam, E., Szell, M., Schaefer, E., and Nagy, F., The developmental and tissue-specific expression of tobacco phytochrome A genes, Plant J., 1994, vol. 6, pp. 283–293.

    Article  CAS  Google Scholar 

  • Ahmad, M., Jarillo, J.A., Smirnova, O., and Cashmore, A.R., The CRY1 blue light photoreceptor of Arabidopsis interacts with phytochrome A in vitro, Mol. Cell, 1998, vol. 1, pp. 939–948.

    Article  PubMed  CAS  Google Scholar 

  • Bae, G. and Choi, G., Decoding of light signals by plant phytochromes and their interacting proteins, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 281–311.

    Article  PubMed  CAS  Google Scholar 

  • Bai, H., Murali, B., Barber, K., and Wolverton, C., Low phosphate alters lateral root setpoint angle and gravitropism, Am. J. Bot., 2013, vol. 100, pp. 175–182.

    Article  PubMed  CAS  Google Scholar 

  • Benjamins, R. and Scheres, B., Auxin: the looping star in plant development, Ann. Rev. Plant Biol., 2008, vol. 59, pp. 443–465.

    Article  CAS  Google Scholar 

  • Boccalandro, H.E., de Simone, S.N., Bergmann-Honsberger, A., Schepens, I., Fankhauser, C., and Casal, J.J., Phytochrome kinase substrate1 regulates root phototropism and gravitropism, Plant Physiol., 2008, vol. 146, pp. 108–115.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Briggs, W.R., Beck, A.R., Cashmore, A.R., Christie, J.M., Hughes, J., et al., The phototropin family of photoreceptors, Plant Cell, 2001, vol. 13, pp. 993–997.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bushart, T.J., Cannon, A.E., Haque, A., Miguel, P.S., Mostajeran, K., Clark, G.B., Porterfield, D.M., and Roux, S.J., RNA-seq analysis identifies potential modulators of gravity response in spores of Ceratopteris (Parkeriaceae): evidence for modulation by calcium pumps and apyrase activity, Am. J. Bot., 2013, vol. 100, pp. 161–174.

    Article  PubMed  CAS  Google Scholar 

  • Chen, R., Rosen, E., and Masson, P.H., Gravitropism in higher plants, Plant Physiol., 1999, vol. 120, pp. 343–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi, G., Yi, H., Lee, J., Kwon, Y.-K., Soh, M.-S., Shin, B., Luka, Z., Hahn, T.-R., and Song, P.-S., Phytochrome signaling is mediated through nucleoside diphosphate kinase 2, Nature, 1999, vol. 401, pp. 610–613.

    Article  PubMed  CAS  Google Scholar 

  • Christie, J.M., Phototropin blue-light receptors, Ann. Rev. Plant Biol., 2007, vol. 58, pp. 21–45.

    Article  CAS  Google Scholar 

  • Christie, J.M. and Murphy, A.S., Shoot phototropism in higher plants: new light through old concepts, Am. J. Bot., 2013, vol. 100, no. 1, pp. 35–46.

    Article  PubMed  CAS  Google Scholar 

  • Cline, M.G., Apical dominance, Bot. Rev., 1991, vol. 57, no. 4, pp. 318–358.

    Article  Google Scholar 

  • Correll, M.J. and Kiss, J.Z., The roles of phytochrome in elongation and gravitropism of roots, Plant Cell Physiol., 2005, vol. 46, pp. 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Costigan, S.E., Warnasooriya, S.N., Humphries, B.A., and Montgomery, B.L., Root-localized phytochrome chromophore synthesis is required for photoregulation of root elongation and impacts root sensitivity to jasmonic acid in Arabidopsis thaliana, Plant Physiol., 2011, vol. 157, pp. 1138–1150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Darwin, C., The Power of Movement in Plants, London: John Murray, 1880.

    Book  Google Scholar 

  • Esmon, C.A., Pedmale, U.V., and Liscum, E., Plant tropisms: providing the power of movement to a sessile organism, Int. J. Dev. Biol., 2005, vol. 49, pp. 665–674.

    Article  PubMed  CAS  Google Scholar 

  • Fankhauser, C., Yeh, K.-C., Logarias, J., Zhang, H., Elich, T.D., and Chory, J., PKS1, a substrate phosphorylated by phytochrome that modulates light signaling in Arabidopsis, Science, 1999, vol. 284, pp. 1539–1541.

    Article  PubMed  CAS  Google Scholar 

  • Gutjahr, C., Riemann, M., Müller, A., Düchting, P., Weiler, E.W., and Nick, P., Cholodny–Went revisited: a role for jacmonate in gravitropism of rice coleoptiles, Planta, 2005, vol. 222, pp. 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Harper, R.M., Stowe-Evans, E.L., Luesse, D.R., Muto, H., Tatematsu, K., Watahiki, M.K., Yamamoto, K., and Liscum, E., The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue, Plant Cell, 2000, vol. 12, pp. 757–770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hart, J.W., Plant Tropisms and Other Growth Movements, London: Unwin Hyman, 1990.

    Google Scholar 

  • Hashiguchi, Y., Tasaka, M., and Morita, M.T., Mechanism of higher plant gravity sensing, Am. J. Bot., 2013, vol. 100, pp. 91–100.

    Article  PubMed  CAS  Google Scholar 

  • Hänisch ten Gate, C.H. and Breteler, H., Role of sugars in nitrate utilization by roots of dwarf bean, Physiol. Plant, 1981, vol. 52, pp. 129–135.

    Article  Google Scholar 

  • Hensel, W., Gravi- and phototropism of higher plants, Progr. Bot., 1986, vol. 48, pp. 205–214.

    Article  Google Scholar 

  • Hohm, T., Preuten, T., and Fankhauser, C., Phototropism: translating light into directional growth, Am. J. Bot., 2013, vol. 100, pp. 47–59.

    Article  PubMed  CAS  Google Scholar 

  • Hopkins, J.A. and Kiss, J.Z., Phototropism and gravitropism in transgenic lines of Arabidopsis altered in the phytochrome pathway, Physiol. Plant, 2012, vol. 145, pp. 461–473.

    Article  PubMed  CAS  Google Scholar 

  • Huang, S.-J., Chang, C.-L., Wang, P.-H., Tsai, M.-C., Hsu, P.-H., and Chang, I.-F., A type III ACC synthase, ACS7, is involved in root gravitropism in Arabidopsis thaliana, J. Exp. Bot. 2013, vol. 64, pp. 4343–4360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jacobs, W.P., Rhizome gravitropism precedes gravimorphogenesis after inversion of the gree algal coenocytes Caulerpa prolifera (Caulerpales), Am. J. Bot., 1993, vol. 80, no. 11, pp. 1273–1275.

    Article  Google Scholar 

  • Kaur, P., Mott, I.W., Larson, S.R., Bushman, B.S., Hernandez, A.G., Kim, W.R., Liu, L., and Mikel, M.A., Gene expression polymorphisms and ESTs associated with gravitropic response of subterranean branch meristems and growth habit in Leumus wild ryes, Plant Sci., 2008, vol. 175, pp. 330–338.

    Article  CAS  Google Scholar 

  • Khokhryakov, A.P., Evolyutsiya biomorfologii rastenii (Evolution of Biomorphology of the Plants), Moscow: Nauka, 1981.

    Google Scholar 

  • Kholodnyi, N.G., Fitogormony. Ocherki po fiziologii gormonal’nykh yavlenii v rastitel’nom orgnaizme (Essays on Physiology of Hormonal Activity in the Plants), Kiev: Akad. Nauk UkrSSR, 1939.

    Google Scholar 

  • Kim, J., Yi, H., Choi, G., Shin, B., and Song, P.S., Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction, Plant Cell, 2003, vol. 15, pp. 2399–2407.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kiss, J.Z., Mullen, J.L., Correl, M.J., and Hangarter, R.P., Phytochromes A and B mediate red-light-induced positive phototropism in roots, Plant Physiol., 2003, vol. 131, pp. 1411–1417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kutschera, U. and Briggs, W.R., Root phototropism: from dogma to the mechanism of blue light perception, Planta, 2012, vol. 235, no. 3, pp. 443–452.

    Article  PubMed  CAS  Google Scholar 

  • Kutschera, U., Siebert, C., Masuda, Y., and Sievers, A., Effects of submergence on development and gravitropism in the coleoptile of Oriza sativa L., Planta, 1990, vol. 183, no. 1, pp. 112–119.

    Google Scholar 

  • Lariguet, P., Boccalandro, H.E., and Alonso, J.M., A growth regulatory loop that provides homeostasis to phytochrome A signaling, Plant Cell, 2003, vol. 15, pp. 2966–2978.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lariguet, P., Schepens, I., Hodgson, D., Pedmale, U.V., Trivisan, M., et al., PHYTOCHROME KINASE SUBSTRATE1 is a phototropin 1 binding protein required for phototropism, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, pp. 10134–10139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leopold, A.C., What remains of the Cholodny–Went theory? Valid but not universal, Plant, Cell Environ., 1992, vol. 15, no. 7, pp. 777–778.

    CAS  Google Scholar 

  • Li, J., Dai, X., and Zhao, Y., A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis, Plant Physiol., 2006, vol. 140, pp. 899–908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liscum, E., Askinosie, S.K., Leuchtman, D.L., Morrow, J., Willenburg, K.T., and Coats, D.R., Phototropism: growing towards an understanding of plant movement, Plant Cell, 2014, vol. 26, pp. 38–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Markarov, A.M., Morphophysiology of underground shoots of herbaceous perennials: growth, geo- and phototropism, and development, Extended Abstract of Doctoral (Biol.) Dissertation, St. Petersburg: Komi State Pedagog. Inst., 1996.

    Google Scholar 

  • Markarov, A.M. and Golovko, T.K., Growth orientation of underground shoots in perennial herbaceous plants. 1. Decapitation of above-ground shoots and various photoperiods do not change rhizome and stolon growth orientation, Russ. J. Plant Physiol., 1995a, vol. 42, no. 4, pp. 461–467.

    Google Scholar 

  • Markarov, A.M. and Golovko, T.K., Growth orientation of underground shoots in perennial herbaceous plants. 2. Effect of light on rhizome and stolon growth orientation, Russ. J. Plant Physiol., 1995b, vol. 42, no. 4, pp. 468–472.

    CAS  Google Scholar 

  • Markarov, A.M. and Golovko, T.K., Growth orientation of underground shoots in perennial herbaceous plants. 3. Morphophysiology of underground shoots and sarment development, Russ. J. Plant Physiol., 1995c, vol. 42, no. 5, pp. 630–634.

    CAS  Google Scholar 

  • Markarov, A.M. and Golovko, T.K., Growth orientation of underground shoots in perennial herbaceous plants. 4. The role of light and hormones in the control of diatropic growth orientation of stolons, Russ. J. Plant Physiol., 1995d, vol. 42, no. 5, pp. 635–639.

    CAS  Google Scholar 

  • Markarov, A.M. and Golovko, T.K., Growth orientation of underground shoots: stolons and rhizomes and aboveground creeping shoots in perennial herbaceous plants, in The Handbook of Plant and Crop Physiology, Pessarakli, M., Ed., Boca Raton: CRC Press, 2014, pp. 157–166.

    Google Scholar 

  • Maslova, S.P., The effect of the apical bud on the growth of lateral buds on subterranean shoots, Russ. J. Plant Physiol., 2001, vol. 48, no. 5, pp. 668–671.

    Article  CAS  Google Scholar 

  • Maslova, S.P., Structure and metabolism of the underground shoot complex of rhizome plants: ontogenetic and ecological aspects, Usp. Sovrem. Biol., 2014, vol. 134, no. 2, pp. 158–168.

    CAS  Google Scholar 

  • Maslova, S.P., Tabalenkova, G.N., Kurenkova, S.V., and Plusnina, S.N., Seasonal changes in anatomical and morphological structure and the content of phytohormones and sugars in underground shoots of a long-rhizome perennial grass Phalaroides arundinacea, Russ. J. Plant Physiol., 2007, vol. 54, no. 4, pp. 491–497.

    Article  CAS  Google Scholar 

  • Maslova, S.P., Tabalenkova, G.N., Malyshev, R.V., and Golovko, T.K., Seasonal changes in growth and metabolic activity of underground shoots of yarrow, Russ. J. Plant Physiol., 2013, vol. 60, no. 6, pp. 821–829.

    Article  CAS  Google Scholar 

  • Maslova, S.P., Tabalenkova, G.N., Plusnina, S.N. and Golovko, T.K., Morfofiziologiya i ekologiya podzemnogo metamernogo kompleksa dlinnokornevishchnykh rastenii (Morphophysiology and Ecology of Underground Metameric Complex of Long-Root Plants), Moscow: Nauka, 2015.

    Google Scholar 

  • Medvedev, S.S., Fiziologicheskie osnovy polyarnosti rastenii (Physiological Basis of the Plant Polarity), St. Petersburg: Kol’na, 1996.

    Google Scholar 

  • Medvedev, S.S., Polyarnost’ i ee rol’ v regulyatsii rosta i morfogeneza rastenii (Role of Polarity in Regulation of Growth and Morphogenesis of the Plants), St. Petersburg: Nauka, 2013.

    Google Scholar 

  • Medvedev, S.S., Markova, I.V., Batov, A.Y., and Moshkov, A.V., Membrane mechanism of IAA action, Biologia (Vilnius), 1998, no. 3, pp. 31–34.

    Google Scholar 

  • Mo, M., Yokawa, K., and Baluska, F., How and why do root apices sense light under the soil surface, Front. Plant Sci., 2015, vol. 6, pp. 1–8.

    Google Scholar 

  • Molas, M.L. and Kiss, J.Z., PKS1 plays a role in red lightbased positive phototropism in roots, Plant Cell Environ., 2008, vol. 31, pp. 842–849.

    Article  PubMed  CAS  Google Scholar 

  • Molas, L.M. and Kiss, J.Z., Phototropism and gravitropism in plants, Adv. Bot. Res., 2009, vol. 49, pp. 1–34.

    Article  CAS  Google Scholar 

  • Nakamoto, D., Ikeura, A., Asami, T., and Yamamoto, K.T., Inhibition of brassinosteroid biosynthesis by either a dwarf4 mutation or a brassinosteroid biosynthesis inhibitor rescues defects in tropic responses of hypocotyls in the Arabidopsis mutant nonphototropic hypocotyl 4, Plant Physiol., 2006, vol. 141, pp. 456–464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ni, M., Tepperman, J.M., and Quail, P.H., PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel helix-loophelix protein, Cell, 1998, vol. 95, pp. 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Ogura, T., Tanaka, N., Yabe, N., Komatsu, S., and Hasunuma, K., Characterization of protein complex containing nucleosid diphosphate kinase with characteristics of light signal transduction through phytochrome in etiolated pea seedlings, Photochem. Photobiol., 1999, vol. 69, pp. 397–403.

    Article  CAS  Google Scholar 

  • Peer, W.A., Blakeslee, J.J., Yang, H., and Murphy, A.S., Seven things we think we know about auxin transport, Mol. Plant, 2011, vol. 4, pp. 487–504.

    Article  PubMed  CAS  Google Scholar 

  • Polevoi, V.V., Rol’ auksina v regulyatsii rosta i razvitiya rastenii. Gormonal’naya regulyatsiya ontogeneza rastenii (Role of Auxin in Regulation of Growth and Development of the Plants. Hormonal Regulation of the Plant Ontogenesis), Moscow: Nauka, 1984.

    Google Scholar 

  • Polevoi, V.V., Rol’ auksina v sistemakh regulyatsii u rastenii (Role of Auxin in the Regulatory Systems in the Plants), Leningrad: Nauka, 1986.

    Google Scholar 

  • Quail, P.H., Phytochrome photosensory signaling networks, Nat. Rev. Mol. Cell Biol., 2002, vol. 3, pp. 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Romanov, G.A., How do cytokinins affect the cell? Russ. J. Plant Physiol., 2009, vol. 56, no. 2, pp. 268–290.

    Article  CAS  Google Scholar 

  • Ruifeng, H., Kim, M.-J., Nelson, W., Babuena, T.S., Kim, R., Kramer, R., Crow, J.A., May, G.D., Thelen, J.J., Soderlund, C.A., and Gang, D.R., Next-generation sequencing-based transcriptomic and proteomic analysis of the common reed, Phragmites australis (Poaceae), reveals genes involved in invasiveness and rhizome specificity, Ann. J. Bot., 2012, vol. 99, no. 2, pp. 232–247.

    Article  CAS  Google Scholar 

  • Ruppel, N., Hangarter, R., and Kiss, J., Red-light induced positive phototropism in Arabidopsis root, Planta, 2001, vol. 212, pp. 424–430.

    Article  PubMed  CAS  Google Scholar 

  • Sineshchekov, V.A., Fitokhorm A: polimorfizm i polifunktsional’nost’ (Phytochrome A: Polymorphism and Polyfunctionality), Moscow: Nauchnyi Mir, 2013.

    Google Scholar 

  • Smith, H., Physiological and ecological function whithin the phytochrome family, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, vol. 46, pp. 289–315.

    Article  CAS  Google Scholar 

  • Smith, H., Phytochromes and light signal perception by plants an emerging synthesis, Nature, 2000, vol. 407, pp. 585–591.

    Article  PubMed  CAS  Google Scholar 

  • Snigirevskaya, N.S., Fossil species of order Asteroxylales, in Zhizn’ rastenii. Tom 4. Mkhi. Plauny. Khvoshchi. Paporotniki. Golosemennye rasteniya (Life of Plants, Vol. 4: Mosses, Clubmosses, Horsetails, Ferns, and Gymnosperm Plants), Fedorov, A.A., Ed., Moscow: Prosveshchenie, 1998, pp. 100–104.

    Google Scholar 

  • Somers, D.E. and Quail, P.H., Phytochrome-mediated light regulation of phyA- and phyB-GUS transgenes in Arabidopsis thaliana seedlings, Plant Physiol., 1995, vol. 107, pp. 523–534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Takhtyadzhyan, A.L., Osnovy evolyutsionnoi morfologii pokrytosemennykh rastenii (Evolutionary Morphology of Angiosperms), Moscow: Nauka, 1964.

    Google Scholar 

  • Takhtyadzhyan, A.L., Section Ryniophita, in Zhizn’ rastenii. Tom 4. Mkhi. Plauny. Khvoshchi. Paporotniki. Golosemennye rasteniya (Life of Plants, Vol. 4: Mosses, Clubmosses, Horsetails, Ferns, and Gymnosperm Plants), Fedorov, A.A., Ed., Moscow: Prosveshchenie, 1998a, pp. 39–44.

    Google Scholar 

  • Takhtyadzhyan, A.L., Division Polypodiophyta: general characteristics, in Zhizn’ rastenii. Tom 4. Mkhi. Plauny. Khvoshchi. Paporotniki. Golosemennye rasteniya (Life of Plants, Vol. 4: Mosses, Clubmosses, Horsetails, Ferns, and Gymnosperm Plants), Fedorov, A.A., Ed., Moscow: Prosveshchenie, 1998b, pp. 169–170.

    Google Scholar 

  • Tester, M. and Morris, C., The penetration of light through soil, Plant, Cell Environ., 1987, vol. 10, no. 4, pp. 281–286.

    Article  Google Scholar 

  • Tsuchida-Mayama, T., Sakai, T., Hanada, A., Uehara, Y., Asami, T., and Yamaguchi, S., Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism, Plant J., 2010, vol. 62, pp. 653–662.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbrink, J.P., Kiss, J.Z., Herranz, R., and Medina, F.J., Light and gravity signals synergize in modulating plant development, Front. Plant Sci., 2014, vol. 28, pp. 1–18.

    Google Scholar 

  • Vandenbussche, F., Callebert, P., Zadnikova, P., Benkova, E., and van der Straeten, D., Brassinosteroid control of shoot gravitropism interacts with ethylene and depends on auxin signaling components, Am. J. Bot., 2013., vol. 100, pp. 215–225.

    Article  PubMed  CAS  Google Scholar 

  • Veyres, N., Danon, A., Aono, M., Galliot, S., Karibasappa, Y.B., et al., The Arabodopsis sweetie mutant is affected in carbohydrate metabolism and defective in the control of growth, development and senescence, Plant J., 2008, vol. 55, pp. 665–686.

    Article  PubMed  CAS  Google Scholar 

  • Vinterhalter, D., Vinterhalter, B., Miljuš-Djuki, J., Jovanovic, Ž., and Orbovic, V., Daily changes in the competence for photo- and gravitropic response by potato plantles, J. Plant Growth Regul., 2014, vol. 33, pp. 539–550.

    Article  CAS  Google Scholar 

  • Wan, Y.L., Eisinger, W., Ehrhardt, D., Kubitscheck, U., Baluska, F., and Briggs, W., The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana, Mol. Plant, 2008., vol. 1, pp. 103–117.

    Article  PubMed  CAS  Google Scholar 

  • Wareing, P. and Phillips, I., Growth and Differentiation in Plants, Oxford: Pergamon, 1981.

    Google Scholar 

  • Went, F.W., Eine botanische Polaritätstheorie, Jahr. Wiss. Bot., 1932, vol. 76, p. 528.

    Google Scholar 

  • Wilkins, M.B., Growth control mechanisms in gravitropism, in Encyclopedia of Plant Physiology, Vol. 3: Physiology of Movements, Haupt, W. and Feinleib, M.E., Eds., Berlin: Springer-Verlag, 1979, pp 601–626.

    Google Scholar 

  • Willige, B.C., Isono, E., Richter, R., Zourelidou, M., and Schwechheimer, C., Gibberellin regulates PINFORMED abundance and is required for auxin transport-dependent growth and development in Arabidopsis thaliana, Plant Cell, 2011, vol. 23, pp. 2184–2195.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Willis, K.J. and Mc Elwair, J.C., The Evolution of Plants, Oxford: Oxford Univ. Press, 2002.

    Google Scholar 

  • Withers, J.C., Shipp, M.J., Rupasinghe, S.G., Sukumar, P., Schuler, M., Muday, G.K., and Wyatt, S.E., Gravity persistent signal 1 (GPS1) reveals a novel cytochrome P450 involved in gravitropism, Am. J. Bot., 2013, vol. 100, pp. 183–193.

    Article  PubMed  CAS  Google Scholar 

  • Wyatt, S.E. and Kiss, J.Z., Plant tropism: from Darwin to the international space station, Am. J. Bot., 2013, vol. 100, no. 1, pp. 1–3.

    Article  PubMed  Google Scholar 

  • Zimmerman, S., Thomine, S., Guern, J., and Barbier-Brygoo, H., An anion current at the plasma membrane of tobacco protoplast shows ATP-dependent voltage and is modulated by auxin, Plant J., 1994, vol. 6, pp. 707–716.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Maslova.

Additional information

Original Russian Text © S.P. Maslova, T.K. Golovko, 2017, published in Zhurnal Obshchei Biologii, 2017, Vol. 78, No. 2, pp. 47–60.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maslova, S.P., Golovko, T.K. Tropisms of Underground Shoots—Stolons and Rhizomes. Biol Bull Rev 8, 181–192 (2018). https://doi.org/10.1134/S207908641803009X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908641803009X

Navigation