Skip to main content
Log in

Specific Features of Apoptotic Signaling Regulation in Cells Infected with Cytomegalovirus and Epstein–Barr Virus

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

A large proportion of global population is infected with lymphotropic herpesviruses—cytomegalovirus (CMV) and Epstein–Barr virus (EBV). The products of CMV and EBV gene expression influence various elements of the apoptosis signaling pathways in infected cells and result in successful virus persistence. Some specific features in the interaction of CMV and EBV proteins and RNA transcripts with cellular proteins of apoptosis signaling pathways are considered. The review focuses on the structural and functional elements of the apoptosis-associated signaling pathways that are affected by these viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adler, B. and Sinzger, C., Endothelial cells in human cytomegalovirus infection: one host cell out of many or a crucial target for virus spread? Thromb. Haemostasis, 2009, vol. 102, no. 6, pp. 1057–1063.

    CAS  Google Scholar 

  • Amundson, S.A., Myers, T.G., and Fornace, A.J., Jr., Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress, Oncogene, 1998, vol. 17, pp. 3287–3299.

    Article  PubMed  Google Scholar 

  • Anderton, E., Yee, J., Smith, P., et al., Two Epstein–Barr virus (EBV) oncoproteins cooperate to repress expression of the proapoptotic tumor-suppressor Bim: clues to the pathogenesis of Burkitt’s lymphoma, Oncogene, 2008, vol. 27, no. 4, pp. 421–433.

    Article  CAS  PubMed  Google Scholar 

  • Bellows, D.S., Howell, M., Pearson, C., et al., Epstein–Barr virus BALF1 is a BCL-2-like antagonist of the herpesvirus antiapoptotic BCL-2 proteins, J. Virol., 2002, vol. 76, no. 5, pp. 2469–2479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blokhin, D.Yu., Sokolovskaya, A.A., Mikhailov, A.D., et al., CD95-induced apoptosis and multiresistant phenotype of human lymphoblastoid T-cells, Ross. Bioter. Zh., 2003, vol. 2, no. 3, pp. 37–46.

    Google Scholar 

  • Bonin, L.R. and McDougall, J.K., Human cytomegalovirus IE2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function, J. Virol., 1997, vol. 71, pp. 5861–5870.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brune, W., Inhibition of programmed cell death by cytomegaloviruses, Virus Res., 2011, vol. 157, pp. 144–150.

    Article  CAS  PubMed  Google Scholar 

  • Cai, X., Schafer, A., Lu, S., et al., Epstein–Barr virus microRNAs are evolutionarily conserved and differen tially expressed, PLoS Pathog., 2006, vol. 2, no. 3, p. e23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Carmilleri-Broet, B.S., Davi, F., Feuillard, J., et al., High expression of latent membrane protein 1 of Epstein–Barr virus and Bcl-2 oncoprotein in acquired immunodeficiency syndrome-related primary brain lymphomas, Blood, 1995, vol. 86, no. 2, pp. 432–435.

    Google Scholar 

  • Chakrabarti, A., Chen, A.W., and Varner, J.D., A review of the mammalian unfolded protein response, Biotechnol. Bioeng., 2011, vol. 108, pp. 2777–2793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, C., Li, D., and Guo, N., Regulation of cellular and viral protein expression by the Epstein–Barr virus transcriptional regulator Zta: implications for therapy of EBV associated tumors, Cancer Biol. Ther., 2009, vol. 8, no. 11, pp. 987–995.

    Article  CAS  PubMed  Google Scholar 

  • Chiou, S.H., Yang, Y.P., Lin, J.C., et al., The immediate early 2 protein of human cytomegalovirus (HCMV) mediates the apoptotic control in HCMV retinitis through up-regulation of the cellular FLICE-inhibitory protein expression, J. Immunol., 2006, vol. 177, pp. 6199–6206.

    Article  CAS  PubMed  Google Scholar 

  • Choy, E.Y., Siu, K.L., Kok, K.H., et al., An Epstein–Barr virusencoded microRNA targets Puma to promote host cell survival, J. Exp. Med., 2008, vol. 205, no. 11, pp. 2551–2560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, J.I. and Lekstrom, K., Epstein–Barr virus BARF1 protein is dispensable for B-cell transformation and inhibits alpha interferon secretion from mononuclear cells, J. Virol., 1999, vol. 73, no. 9, pp. 7627–7632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cross, J.R., Postigo, A., Blight, K., and Downward, J., Viral pro-survival proteins block separate stages in Bax activation but changes in mitochondrial ultrastructure still occur, Cell Death Diff., 2008, vol. 15, no. 6, pp. 997–1008.

    Article  CAS  Google Scholar 

  • Dempsey, P.W., Doyle, S.E., He, J.Q., et al., The signaling adaptors and pathways activated by TNF superfamily, Cytokine Growth Factor Rev., 2003, vol. 14, pp. 193–209.

    Article  CAS  PubMed  Google Scholar 

  • Desbien, A.L., Kappler, J.W., and Marrack, P., The Epstein–Barr virus Bcl-2 homolog, BHRF1, blocks apoptosis by binding to a limited amount of Bim, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 14, pp. 5663–5668.

    CAS  PubMed  Google Scholar 

  • Dewson, G., Kratina, T., Sim, H.W., et al., To trigger apoptosis, Bak exposes its BH3 domain and homodimerizes via BH3: groove interactions, Mol. Cell, 2008, vol. 30, pp. 369–380.

    CAS  PubMed  Google Scholar 

  • Dreyfus, D.H., Nagasawa, M., Pratt, J.C., et al., Inactivation of NF-kB by EBV BZLF-1-encoded ZEBRA protein in human T cells, J. Immunol., 1999, vol. 163, no. 11, pp. 6261–6268.

    CAS  PubMed  Google Scholar 

  • Electronic epidemiological atlas of the Volga Federal District. http://epidatlas.nniiem.ru. Accessed January 20, 2017.

  • Filatova, E.N. and Utkin, O.V., Modern approaches to the modeling of herpesvirus infection, Medial’, 2014, vol. 2, no. 12, pp. 172–197.

    Google Scholar 

  • Finke, J., Fritzen, R., Ternes, P., et al., Expression of bcl-2 in Burkitt’s lymphoma cell lines: induction by latent Epstein–Barr virus genes, Blood, 1992, vol. 80, no. 2, pp. 459–469.

    CAS  PubMed  Google Scholar 

  • Fliss, P.M. and Brune, W., Prevention of cellular suicide by cytomegaloviruses, Viruses, 2012, vol. 4, pp. 1928–1949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floettmann, J.E. and Rowe, M., Epstein–Barr virus latent membrane protein-1 (LMP1) C-terminus activation region 2 (CTAR2) maps to the far C-terminus and requires oligomerisation for NF-?B activation, Oncogene, 1997, vol. 15, pp. 1851–1858.

    Article  CAS  PubMed  Google Scholar 

  • Fu, Q., He, C., and Mao, Z.R., Epstein–Barr virus interactions with the Bcl-2 protein family and apoptosis in human tumor cells, J. Zhejiang Univ. Sci. Biomed. Biotech., 2013, vol. 14, no. 1, pp. 8–24.

    Article  CAS  Google Scholar 

  • Gerna, G., Zipeto, D., Percivalle, E., et al., Human cytomegalovirus infection of the major leukocyte subpopulations and evidence for initial viral replication in polymorphonuclear leukocytes from viremic patients, J. Infect. Dis., 1992, vol. 166, no. 6, pp. 1236–1244.

    Article  CAS  PubMed  Google Scholar 

  • Gires, O., Zimber-Strobl, U., Gonnella, R., et al., Latent membrane protein 1 of Epstein–Barr virus mimics a constitutively active receptor molecule, EMBO J., 1997, vol. 16, pp. 6131–6140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldmacher, V.S., Bartle, L.M., Skaletskaya, A., et al., A cytomegalovirus-encoded mitochondria-localized inhibitor of apoptosis structurally unrelated to Bcl-2, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, pp. 12536–12541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golks, A., Brenner, D., Fritsch, C., et al., c-FLIPR, a new regulator of death receptor-induced apoptosis, J. Biol. Chem., 2005, vol. 280, no. 15, pp. 14507–14513.

    CAS  Google Scholar 

  • Green, D.R. and Reed, J.C., Mitochondria and apoptosis, Science, 1998, vol. 281, pp. 1309–1312.

    Article  CAS  PubMed  Google Scholar 

  • Grefte, A., Blom, N., van der Giessen, M., et al., Ultrastructural analysis of circulating cytomegalic cells in patients with active cytomegalovirus infection: evidence for virus production and endothelial origin, J. Infect. Dis., 1993, vol. 168, no. 5, pp. 1110–1118.

    Article  CAS  PubMed  Google Scholar 

  • Hayward, S.D., Viral interactions with the Notch pathway, Semin. Cancer Biol., 2004, vol. 14, no. 5, pp. 387–396.

    Article  CAS  PubMed  Google Scholar 

  • Hehlgans, T. and Pfeffer, K., The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games, J. Immunol., 2005, vol. 115, pp. 1–20.

    CAS  Google Scholar 

  • Hickish, T., Robertson, D., Clarke, P., et al., Ultrastructural localization of BHRF1: an Epstein–Barr virus gene product which has homology with bcl-2, Cancer Res., 1994, vol. 54, pp. 2808–2811.

    CAS  PubMed  Google Scholar 

  • Howe, J.G. and Steitz, J.A., Localization of Epstein–Barr virus-encoded small RNAs by in situ hybridization, Proc. Natl. Acad. Sci. U.S.A., 1986, vol. 83, pp. 9006–9010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isler, J.A., Skalet, A.H., and Alwine, J.C., Human cytomegalovirus infection activates and regulates the unfolded protein response, J. Virol., 2005, vol. 79, pp. 6890–6899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalla, M., Schmeinck, A., Bergbauer, M., et al., AP-1 homolog BZLF1 of Epstein–Barr virus has two essential functions dependent on the epigenetic state of the viral genome, Proc. Natl. Acad. Sci. U.S.A., 2010, vol. 107, no. 2, pp. 850–855.

    Article  CAS  PubMed  Google Scholar 

  • Keating, S., Prince, S., Jones, M., and Rowe, M., The lytic cycle of Epstein–Barr virus is associated with decreased expression of cell surface major histocompatibility complex class I and class II molecules, J. Virol., 2002, vol. 76, no. 16, pp. 8179–8188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, G.L., Long, H.M., and Stylianou, J., An Epstein–Barr virus anti-apoptotic protein constitutively expressed in transformed cells and implicated in Burkitt’s lymphomagenesis: the WP/BHRF1 link, PLoS Pathog., 2009, vol. 5, no. 3, p. e1000341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kenney, J.L., Guinness, M.E., Curiel, T., and Lacy, J., Antisense to the Epstein–Barr virus (EBV)-encoded latent membrane protein 1 (LMP-1) suppresses LMP-1 and bcl-2 expression and promotes apoptosis in EBVimmortalized B cells, Blood, 1998, vol. 92, no. 5, pp. 1721–1727.

    CAS  PubMed  Google Scholar 

  • Kieff, E. and Rickinson, A.B., Epstein–Barr virus and its replication, in Fields Virology, Knipe, D.M. and Howley, P.M., Eds., Philadelphia: Lippincott Williams and Wilkins, 2007, pp. 2603–2654.

  • Kiener, P.A., Davis, P.M., Staring, G.C., et al., Differential induction of apoptosis by Fas–Fas-ligand interactions in human monocytes and macrophages, J. Exp. Med., 1997, vol. 185, pp. 1511–1516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Yu, S.S., and Kim, V.N., Essential role of NF-kB in transactivation of the human immunodeficiency virus long terminal repeat by the human cytomegalovirus 1E1 protein, J. Gen. Virol., 1996, vol. 77, pp. 83–91.

    Article  CAS  PubMed  Google Scholar 

  • Ko, L.J. and Prives, C., p53: puzzle and paradigm, Genes Dev., 1996, vol. 10, pp. 1054–1072.

    Article  CAS  PubMed  Google Scholar 

  • Kohlhof, H., Hampel, F., Hoffmann, R., et al., Notch1, Notch2, and Epstein–Barr virus-encoded nuclear antigen 2 signaling differentially affects proliferation and survival of Epstein–Barr virus-infected B cells, Blood, 2009, vol. 113, no. 22, pp. 5506–5515.

    CAS  PubMed  Google Scholar 

  • Komano, J., Maruo, S., Kurozumi, K., et al., Oncogenic role of Epstein–Barr virus-encoded RNAs in Burkitt’s lymphoma cell line akata, J. Virol., 1999, vol. 73, no. 12, pp. 9827–9831.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuskova, T.K. and Belova, E.G., Modern herpesvirus family, Lech. Vrach, 2004, no. 5, pp. 64–69.

    Google Scholar 

  • Kuwana, T., Bouchier-Hayes, L., Chipuk, J.E., et al., BH3 domains of BH3-only proteins differentially regulate Baxmediated mitochondrial membrane permeabilization both directly and indirectly, Mol. Cell, 2005, vol. 17, pp. 525–535.

    Article  CAS  PubMed  Google Scholar 

  • Kvansakul, M., Wei, A.H., Fletcher, J.I., et al., Structural basis for apoptosis inhibition by Epstein–Barr virus BHRF1, PLoS Pathog., 2010, vol. 6, no. 12, pp. 1–10.

    Article  CAS  Google Scholar 

  • Le Clorennec, C., Youlyouz-Marfak, I., Adriaenssens, E., et al., EBV latency III immortalization program sensitizes B cells to induction of CD95-mediated apoptosis via LMP1: role of NF-?B, STAT1, and p53, Blood, 2006, vol. 107, pp. 2070–2078.

    Article  PubMed  CAS  Google Scholar 

  • Le Clorennec, C., Ouk, T.S., Youlyouz-Marfak, I., et al., Molecular basis of cytotoxicity of Epstein–Barr virus (EBV) latent membrane protein 1 (LMP1) in EBV latency III b cells: LMP1 induces type II ligand-independent autoactivation of CD95/Fas with caspase 8- mediated apoptosis, J. Virol., 2008, vol. 82, no. 13, pp. 6721–6733.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Le, V.T., Trilling, M., and Hengel, H., The cytomegaloviral protein pUL138 acts as potentiator of tumor necrosis factor (TNF) receptor 1 surface density to enhance ULb-encoded modulation of TNF-signaling, J. Virol., 2011, vol. 85, no. 24, pp. 13260–13270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei, K. and Davis, R.J., JNK phosphorylation of Bimrelated members of the Bcl2 family induces Bax-dependent apoptosis, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, pp. 2432–2437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X. and Bhaduri-McIntosh, S., A central role for STAT3 in gammaherpesvirus-life cycle and -diseases, Front. Microbiol., 2016, vol. 7, art. 1052.

  • Marshall, W.L., Yim, C., Gustafson, E., et al., Epstein–Barr virus encodes a novel homolog of the bcl-2 oncogene that inhibits apoptosis and associates with Bax and Bak, J. Virol., 1999, vol. 73, no. 6, pp. 5181–5185.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick, A.L., Skaletskaya, A., Barry, P.A., et al., Differential function and expression of the viral inhibitor of caspase 8-induced apoptosis (vICA) and the viral mitochondria- localized inhibitor of apoptosis (vMIA) cell death suppressors conserved in primate and rodent cytomegaloviruses, Virology, 2003, vol. 316, pp. 221–233.

    Article  CAS  PubMed  Google Scholar 

  • McCormick, A.L., Roback, L., Livingston-Rosanoff, D., and St. Clair, C., The human cytomegalovirus UL36 gene controls caspase-dependent and -independent cell death programs activated by infection of monocytes differentiating to macrophages, J. Virol., 2010, vol. 84, pp. 5108–5123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison, T.E. and Kenney, S.C., BZLF1, an Epstein–Barr virus immediate-early protein, induces p65 nuclear translocation while inhibiting p65 transcriptional function, Virology, 2004, vol. 328, no. 2, pp. 219–232.

    CAS  Google Scholar 

  • Niedobitek, G., Young, L.S., and Herbst, H., Epstein–Barr virus infection and the pathogenesis of malignant lymphomas, Cancer Surv., 1997, vol. 30, pp. 143–162.

    CAS  PubMed  Google Scholar 

  • O’Brien, V. Viruses and apoptosis, J. Gen. Virol., 1998, vol. 79, pp. 1833–1845.

    Article  PubMed  Google Scholar 

  • Oldstone, M.B., How viruses escape from cytotoxic T lymphocytes: molecular parameters and players, Virology, 1997, vol. 234, no. 2, pp. 179–185.

    Article  CAS  PubMed  Google Scholar 

  • Paschos, K., Smith, P., Anderton, E., et al., Epstein–Barr virus latency in B cells leads to epigenetic repression and CpG methylation of the tumor suppressor gene bim, PLoS Pathog., 2009, vol. 5, no. 6, p. e1000492.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paschos, K., Parker, G.A., Watanatanasup, E., et al., BIM promoter directly targeted by EBNA3C in polycombmediated repression by EBV, Nucleic Acids Res., 2012, vol. 40, no. 15, pp. 7233–7246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauleau, A.L., Larochette, N., Giordanetto, F., et al., Structurefunction analysis of the interaction between Bax and the cytomegalovirus-encoded protein vMIA, Oncogene, 2007, vol. 26, pp. 7067–7080.

    Article  CAS  PubMed  Google Scholar 

  • Paulus, C. and Nevels, M., The human cytomegalovirus major immediate-early proteins as antagonists of intrinsic and innate antiviral host responses, Viruses, 2009, vol. 1, pp. 760–779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plachter, B., Sinzger, C., and Jahn, G., Cell types involved in replication and distribution of human cytomegalovirus, Adv. Virus Res., 1996, vol. 46, pp. 195–261.

    Article  CAS  PubMed  Google Scholar 

  • Portis, T. and Longnecker, R., Epstein–Barr virus (EBV) LMP2A mediates B-lymphocyte survival through constitutive activation of the Ras/PI3K/AKT pathway, Oncogene, 2004, vol. 23, no. 53, pp. 8619–8628.

    Article  CAS  PubMed  Google Scholar 

  • Powers, C., De Filippis, V., Malouli, D., and Fruh, K., Cytomegalovirus immune evasion, Curr. Topics Microbiol. Immunol., 2008, vol. 325, pp. 333–359.

    CAS  Google Scholar 

  • Pratt, Z.L., Zhang, J., and Sugden, B., Simultaneously induce and inhibit oncogene of Epstein–Barr virus can the latent membrane protein 1 (LMP1) apoptosis in B cells, J. Virol., 2012, vol. 86, no. 8, pp. 4380–4393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putcha, G.V., Le, S., Frank, S., et al., JNK-mediated BIM phosphorylation potentiates BAX-dependent apoptosis, Neuron, 2003, vol. 38, pp. 899–914.

    Article  CAS  PubMed  Google Scholar 

  • Reed, J.C., Doctor, K.S., and Goldzik, A., The domain of apoptosis: a genomic perspective, Sci. Signaling, 2004, vol. 239, pp. 1–29.

    Google Scholar 

  • Reeves, M.B., Davies, A.A., McSharry, B.P., et al., Complex I binding by a virally encoded RNA regulates mitochondria- induced cell death, Science, 2007, vol. 316, no. 5829, pp. 1345–1348.

    Article  CAS  PubMed  Google Scholar 

  • Reinke, P., Fietze, E., Ode-Hakim, S., et al., Late-acute renal allograft rejection and symptomless cytomegalovirus infection, Lancet, 1994, vol. 344, nos. 8939–8940, pp. 1737–1738.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, F., Neugebauer, J., Griese, J., et al., The viral oncoprotein LMP1 exploits TRADD for signaling by masking its apoptotic activity, PLoS Biol., 2008, vol. 6, no. 1, p. e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schulze-Osthoff, K., Ferrari, D., Los, M., et al., Apoptosis signaling by death receptors, Eur. J. Biochem., 1998, vol. 254, pp. 439–459.

    Article  CAS  PubMed  Google Scholar 

  • Schütze, S., Tchikov, V., and Schneider-Brachert, W., Regulation of TNFR1 and CD95 signalling by receptor compartmentalization, Nat. Rev. Mol. Cell Biol., 2008, vol. 9, no. 8, pp. 655–662.

    Article  PubMed  CAS  Google Scholar 

  • Seto, E., Moosmann, A., Gromminger, S., et al., Micro RNAs of Epstein–Barr virus promote cell cycle progression and prevent apoptosis of primary human B cells, PLoS Pathog., 2010, vol. 6, p. e1001063.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sheng, W., Decaussin, G., Sumner, S., and Ooka, T., N-terminal domain of BARF1 gene encoded by Epstein–Barr virus is essential for malignant transformation of rodent fibroblasts and activation of BCL-2, Oncogene, 2001, vol. 20, no. 10, pp. 1176–1185.

    Article  CAS  PubMed  Google Scholar 

  • Sinzger, C., Plachter, B., Grefte, A., et al., Tissue macrophages are infected by human cytomegalovirus in vivo, J. Infect. Dis., 1996, vol. 173, no. 1, pp. 240–245.

    Article  CAS  PubMed  Google Scholar 

  • Sinzger, C., Digel, M., and Jahn, G., Cytomegalovirus cell tropism, Curr. Topics Microbiol. Immunol., 2008, vol. 325, pp. 63–83.

    CAS  Google Scholar 

  • Skaletskaya, A., Bartle, L.M., Chittenden, T., et al., A cytomegalovirus- encoded inhibitor of apoptosis that suppresses caspase-8 activation, Proc. Natl. Acad. Sci. U.S.A., 2001, vol. 98, pp. 7829–7834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somova, L.M., Besednova, N.N., and Plekhova, N.G., Apoptosis and infectious diseases, Infekts. Immun., 2014, vol. 4, no. 4, pp. 303–318.

    Google Scholar 

  • Speir, E., Modali, R., Huang, E.S., et al., Potential role of human cytomegalovirus and p53 interaction in coronary restenosis, Science, 1994, vol. 265, pp. 391–394.

    Article  CAS  PubMed  Google Scholar 

  • Steelman, L.S., Pohnert, S.C., Shelton, J.G., et al., JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCRABL in cell cycle progression and leukemogenesis, Leukemia, 2004, vol. 18, no. 2, pp. 189–218.

    Article  CAS  PubMed  Google Scholar 

  • Strockbine, L.D., Cohen, J.I., Farrah, T., et al., The Epstein–Barr virus BARF1 gene encodes a novel, soluble colonystimulating factor-1 receptor, J. Virol., 1998, vol. 72, no. 5, pp. 4015–4021.

    CAS  Google Scholar 

  • Szegezdi, E., Logue, S.E., Gorman, A.M., and Samali, A., Mediators of endoplasmic reticulum stress-induced apoptosis, EMBO Rep., 2006, vol. 7, pp. 880–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terhune, S., Torigoi, E., Moorman, N., et al., Human cytomegalovirus UL38 protein blocks apoptosis, J. Virol., 2007, vol. 81, pp. 3109–3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thome, M., Schneider, P., Hofmann, K., et al., Viral FLICE-inhibitory proteins (FLIPs) prevent apoptosis induced by death receptors, Nature, 1997, vol. 386, no. 6624, pp. 517–521.

    Article  CAS  PubMed  Google Scholar 

  • Thorley-Lawson, D.A. and Babcock, J.G., A model for persistent infection with Epstein–Barr virus: the stealth virus of human B cells, Life Sci., 1999, vol. 65, no. 14, pp. 1433–1453.

    Article  CAS  PubMed  Google Scholar 

  • Tomkinson, B., Robertson, E., and Kieff, E., Epstein–Barr virus nuclear proteins EBNA-3A and EBNA-3C are essential for B-lymphocyte growth transformation, J. Virol., 1993, vol. 67, no. 4, pp. 2014–2025.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Urano, F., Wang, X., Bertolotti, A., et al., Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1, Science, 2000, vol. 287, pp. 664–666.

    Article  CAS  PubMed  Google Scholar 

  • Uren, R.T., Dewson, G., Chen, L., et al., Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak, J. Cell Biol., 2007, vol. 177, pp. 277–287.

    Article  CAS  PubMed  Google Scholar 

  • Utkin, O.V. and Novikov, V.V., Regulation of apoptosis by alternative splicing of matrix RNA, Ross. Bioter. Zh., 2007, vol. 6, no. 2, pp. 13–20.

    CAS  Google Scholar 

  • Utkin, O.V. and Novikov, V.V., Role of receptors of death in apoptosis modulation, Usp. Sovrem. Biol., 2012, vol. 132, no. 4, pp. 381–390.

    CAS  Google Scholar 

  • Wang, S., Rowe, M., and Lundgren, E., Expression of the Epstein–Barr virus transforming protein LMP1 causes a rapid and transient stimulation of the Bcl-2 homologue Mcl-1 levels in B-cell lines, Cancer Res., 1996, vol. 56, pp. 4610–4613.

    CAS  PubMed  Google Scholar 

  • Westphal, D., Dewson, G., Czabotar, P.E., and Kluck, R.M., Molecular biology of Bax and Bak activation and action, Biochim. Biophys. Acta, 2011, vol. 1813, pp. 521–531.

    Article  CAS  PubMed  Google Scholar 

  • Williams, E.J., Embleton, N.D., Clark, J.E., et al., Viral infections: contributions to late fetal death, stillbirth, and infant death, J. Pediatr., 2013, vol. 163, no. 2, pp. 424–428.

    PubMed  Google Scholar 

  • Womack, J. and Jimenez, M., Common questions about infectious mononucleosis, Am. Fam. Physician, 2015, vol. 91, no. 6, pp. 372–376.

    PubMed  Google Scholar 

  • Wong, H.L., Wang, X., Chang, R.C., et al., Stable expression of EBERs in immortalized nasopharyngeal epithelial cells confers resistance to apoptotic stress, Mol. Carcinog., 2005, vol. 44, no. 2, pp. 92–101.

    Article  CAS  PubMed  Google Scholar 

  • Xuan, B., Qian, Z., Torigoi, E., and Yu, D., Human cytomegalovirus protein pUL38 induces ATF4 expression, inhibits persistent JNK phosphorylation, and suppresses endoplasmic reticulum stress-induced cell death, J. Virol., 2009, vol. 83, pp. 3463–3474.

    CAS  PubMed  Google Scholar 

  • Zhao, J., Sinclair, J., Houghton, J., et al., Cytomegalovirus 2.7 RNA transcript protects endothelial cells against apoptosis during ischemia/reperfusion injury, J. Heart Lung Transplant., 2010, vol. 29, no. 3, pp. 342–345.

    Article  PubMed  Google Scholar 

  • Zhu, H., Shen, Y., and Shenk, T., Human cytomegalovirus IE1 and IE2 proteins block apoptosis, J. Virol., 1995, vol. 69, pp. 7960–7970.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimber-Strobl, U. and Strobl, L.J., EBNA2 and Notch signaling in Epstein–Barr virus mediated immortalization of B lymphocytes, Semin. Cancer Biol., 2001, vol. 11, no. 6, pp. 423–434.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, J., Thomas, W.A., Haigh, T.A., et al., Epstein–Barr virus evades CD4+ T cell responses in lytic cycle through BZLF1-mediated down-regulation of CD74 and the cooperation of vBcl-2, PLoS Pathog., 2011, vol. 7, no. 12, p. e1002455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Sakharnov.

Additional information

Original Russian Text © N.A. Sakharnov, O.V. Utkin, D.I. Knyazev, E.N. Filatova, V.D. Tsvetkova, 2017, published in Uspekhi Sovremennoi Biologii, 2017, Vol. 137, No. 4, pp. 387–397.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakharnov, N.A., Utkin, O.V., Knyazev, D.I. et al. Specific Features of Apoptotic Signaling Regulation in Cells Infected with Cytomegalovirus and Epstein–Barr Virus. Biol Bull Rev 8, 114–123 (2018). https://doi.org/10.1134/S207908641802007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207908641802007X

Keywords

Navigation