Skip to main content
Log in

Magnetic fields and fish behavior

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

The available data on the effect of natural and artificial magnetic fields on fish behavior are considered. In this aspect, Elasmobranchii and Teleostei are studied more thoroughly. Elasmobranches and some teleosts are able to perceive magnetic fields via electroreceptors. Some teleosts can sense magnetic fields via sensory cells that contain crystals of biogenic magnetite. Laboratory and field studies demonstrate that magnetic fields affect fish locomotor activity and spatial distribution. The geomagnetic field can be used by fish for navigation. In addition, the effect of artificial magnetic fields and natural fluctuations of the geomagnetic field on fish embryos lead to changes in their development. It is suggested that changes in development can have an aftereffect on fish behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akasofu, S.I. and Chapman, S., Solar-Terrestrial Physics, Oxford: Clarendon, 1972.

    Google Scholar 

  • Albert, J.S. and Crampton, W.G.R., Electroreception and electrogenesis, in The Physiology of Fishes, Boca Raton: CRC Press, 2006, pp. 429–470.

    Google Scholar 

  • Alves-Gomes, J.A., The evolution of electroreception and bioelectrogenesis in teleost fish: a phylogenetic perspective, J. Fish. Biol., 2001, vol. 58, no. 6, pp. 1489–1511.

    Article  Google Scholar 

  • Andrianov, G.N., Brown, H.R., and Ilyinsky, O.B., Responses of central neurons to electrical and magnetic stimuli of the ampullae of Lorenzini in the Black Sea skate, J. Comp. Physiol., A, 1974, vol. 93, no. 4, pp. 287–299.

    Article  Google Scholar 

  • Beason, R. and Semm, P., Does the avian ophthalmic nerve carry magnetic navigational information? J. Exp. Biol., 1996, vol. 199, pp. 1241–1244.

    PubMed  Google Scholar 

  • Branover, G.G., Vasil’ev, A.S., Gleizer, S.I., and Tsinober, A.B., Study of behavior of eel in natural and artificial magnetic fields and analysis of reception mechanism, Vopr. Ikhtiol., 1971, vol. 11, no. 4, pp. 720–727.

    Google Scholar 

  • Brewer, H.B., Some preliminary studies of the effects of a static magnetic field on the life cycle of the Lebistes reticulates (guppy), Biophys. J., 1979, vol. 28, pp. 305–314.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brown, H.R. and Ilyinsky, O.B., The ampullae of Lorenzini in the magnetic field, J. Comp. Physiol., A, 1978, vol. 126, no. 4, pp. 333–341.

    Article  Google Scholar 

  • Buchachenko, A.L., Sagdeev, R.Z., and Salikhov, K.M., Magnitnye i spinovye effekty v khimicheskikh reaktsiyakh (Magnetic and Spin Effects in Chemical Reactions), Novosibirsk: Nauka, 1978.

    Google Scholar 

  • Carey, E.G. and Scharold, J.V., Movements of blue sharks (Prionace glauca) in depth and course, Mar. Biol., 1990, vol. 106, pp. 329–342.

    Article  Google Scholar 

  • Chebotareva, Yu.V., Izyumov, Yu.G., and Krylov, V.V., The effect of an alternating electromagnetic field upon early development in roach (Rutilus rutilus: Cyprinidae, Cypriniformes), J. Ichthyol., 2009, vol. 49, no. 5, pp. 409–415.

    Article  Google Scholar 

  • Chestnoi, V.N., Dinamika ulovistosti donnykh tralov (Dynamics of Catches by Bottom Trawls), Moscow: Legk. Pishch. Prom-st, 1977.

    Google Scholar 

  • Chestnoi, V.N., Radiological test applied for assessment of irregular changes in fish behavior, in Vozmozhnosti ispol’zovaniya fiziko-khimicheskikh razdrazhitelei dlya upravleniya povedeniem ryb (Possible Use of Physical and Chemical Irritants for the Control of Fish Behavior), Moscow: Inst. Probl. Ekol. Evol. Akad. Nauk SSSR, 1983, pp. 104–111.

    Google Scholar 

  • Deshcherevsky, A.V., Sidorin, A.Y., and Kharin, E.P., Geomagnetic disturbances and animal activity in laboratory conditions, Biophysics (Moscow), 2009, vol. 54, no. 3, pp. 389–395.

    Article  Google Scholar 

  • Diebel, C.E., Proksch, R., Green, C.R., Neilson, P., and Walker, M.M., Magnetite defines a magnetoreceptor, Nature, 2000, vol. 406, pp. 299–302.

    Article  CAS  PubMed  Google Scholar 

  • Dijkgraaf, S. and Kalmijn, A.J., Verhaltensversuche zur funktion der Lorenzinischen ampullen, Naturwissenschaften, 1962, vol. 49, no. 17, p. 400.

    Article  Google Scholar 

  • Fleissner, G. and Fleissner, G., Magnetoreception, in Encyclopedia of Animal Behavior, Oxford: Academic, 2010, pp. 324–335.

    Chapter  Google Scholar 

  • Fonarev, G.A., Shneer, V.S., and Protasov, V.R., Electric fields in hydrosphere and their possible influence on fish behavior, in Voprosy gidrobioniki (Problems of Hydrobionics), Moscow: Nauka, 1974, pp. 25–27.

    Google Scholar 

  • Formicki, K., Bonislavska, M., and Jasinski, M., Spatial orientation of trout (Salmo trutta L.) and rainbow trout (Oncorhynchus mykiss Walb.) embryos in natural and artificial magnetic fields, Acta Ichthyol. Piscat., 1997, vol. 27, no. 2, pp. 29–40.

    Google Scholar 

  • Formicki, K., Tanski, A., Sadowski, M., and Winnicki, A., Effects of magnetic fields on fake net performance, J. Appl. Ichthyol., 2004, vol. 20, no. 5, pp. 402–406.

    Article  Google Scholar 

  • Formicki, K. and Winnicki, A., Reactions of fish embryos and larvae to constant magnetic fields, Ital. J. Zool., 1998, vol. 65, pp. 479–482.

    Article  Google Scholar 

  • Frankel, R.B., Blakemore, R.P., and Wolfe, R.S., Magnetite in freshwater magnetotactic bacteria, Science, 1979, vol. 203, pp. 1355–1356.

    Article  CAS  PubMed  Google Scholar 

  • Gould, J.L., Kirschvink, J.L., and Deffeyes, K.S., Bees have magnetic remanence, Science, 1978, vol. 201, pp. 1026–1028.

    Article  CAS  PubMed  Google Scholar 

  • Hanson, M., Karlsson, L., and Westerberg, H., Magnetic material in European eel, (Anguilla anguilla L.), Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1984a, vol. 77, pp. 221–224.

    Article  Google Scholar 

  • Hanson, M., Wirmark, G., Oblad, M., and Strid, L., Iron-rich particles in European eel (Anguilla anguilla L.), Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1984b, vol. 79, pp. 311–316.

    Article  CAS  Google Scholar 

  • Hofmann, M.H., Physiology of ampullary electrosensory systems, in Encyclopedia of Fish Physiology from Genome to Environment, San Diego: Academic, 2011, pp. 359–365.

    Chapter  Google Scholar 

  • Huuskonen, H., Lindbohm, M.-L., and Juutilainen, J., Teratogenic and reproductive effects of low-frequency magnetic fields, Mutat. Res., 1998, vol. 410, pp. 167–183.

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn, A.J., The detection of electric fields from inanimate and animate sources other than electric organs, in Handbook of Sensory Physiology, Berlin: Springer-Verlag, 1974, vol. 3, pp. 147–200.

    Google Scholar 

  • Kalmijn, A.J., Electric and magnetic field detection in elasmobranch fishes, Science, 1982, vol. 218, pp. 916–918.

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn, A.J., Theory of electromagnetic orientation: a further analysis, in Comparative Physiology of Sensory Systems, Cambridge: Cambridge Univ. Press, 1984, pp. 525–560.

    Google Scholar 

  • Kavokin, K.V., The puzzle of magnetic resonance effect on the magnetic compass of migratory birds, Bioelectromagnetics, 2009, vol. 30, pp. 402–410.

    Article  CAS  PubMed  Google Scholar 

  • Kirschvink, J.L. and Gould, J.L., Biogenic magnetite as a basis for magnetic field detection in animals, Biosystems, 1981, vol. 13, pp. 181–201.

    Article  CAS  PubMed  Google Scholar 

  • Kirschvink, J.L., Walker, M.M., Chang S.B., Dizon A.E., and Peterson K.A. Chains of single-domain magnetite particles in chinook salmon, Oncorhynchus tshawytscha, J. Comp. Physiol., A, 1985, vol. 157, pp. 375–381.

    Article  Google Scholar 

  • Kirschvink, J.L., Walker, M.M., and Diebel, C.E., Magnetite-based magnetoreception, Curr. Opin. Neurobiol., 2001, vol. 11, no. 4, pp. 462–467.

    Article  CAS  PubMed  Google Scholar 

  • Klimley, A.P., Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field, Mar. Biol., 1993, vol. 117, pp. 1–22.

    Article  Google Scholar 

  • Klimley, A.P., Beavers, S.C., Curtis, T.H., and Jorgensen, S.J., Movements and swimming behavior of three species of sharks in La Jolla Canyon, California, Environ. Biol. Fish., 2002, vol. 63, pp. 117–135.

    Article  Google Scholar 

  • Klimley, A.P., Butler, S.B., Nelson, D.R., and Stull, A.T., Diel movement of scalloped hammerhead shark, Sphyrna lewini Griffith and Smith, to and from a seamouth in the Gulf of California, J. Fish. Biol., 1988, vol. 33, pp. 751–761.

    Article  Google Scholar 

  • Klimley, A.P., Kihslinger, R.L., and Kelly, J.T., Directional and non-directional movements of bat rays, Myliobatis californica, in Tomales Bay, California, Environ. Biol. Fish., 2005, vol. 74, pp. 79–88.

    Article  Google Scholar 

  • Kobayashi, A.K., Kirschvink, J.L., and Nesson, M.H., Ferromagnetism and EMFs, Nature, 1995, vol. 374, p. 123.

    Article  CAS  PubMed  Google Scholar 

  • Krylov, V.V., Chebotareva, Yu.V., Izyumov, Yu.G., Zotov, O.D., and Osipova, E.A., Effects of an induced magnetic storm on the early ontogenesis of roach Rutilus rutilus (L.), Inland Water Biol., 2010, vol. 3, no. 4, pp. 356–359.

    Article  Google Scholar 

  • Krylov, V.V. and Osipova, E.A., Study of adaptation of Daphnia magna to natural artificial changes of magnetic field, in Fiziologicheskie, biokhimicheskie, i molekulyarno-geneticheskie mekhanizmy adaptatsii gidrobiontov (Physiological, Biochemical, and Molecular-Genetic Adaptive Mechanisms of Hydrobionts), Borok: Inst. Biol. Vnutr. Vod, Ross. Akad. Nauk, 2012, pp. 188–192.

    Google Scholar 

  • Lagroye, I., Percherancier, Y., Juutilainen, J., de Gannes, F.P., and Veyret, B., ELF magnetic fields: animal studies, mechanisms of action, Prog. Biophys. Mol. Biol., 2011, vol. 107, no. 3, pp. 369–373.

    Article  PubMed  Google Scholar 

  • Leitgeb, N., Cech, R., Schrottner, J., Lehofer, P., Schmidpeter, U., and Rampetsreiter, M., Magnetic emissions of electric appliances, Int. J. Hyg. Environ. Health, 2008, vol. 211, pp. 69–73.

    Article  CAS  PubMed  Google Scholar 

  • Lohmann, K.J. and Lohmann, C.M.F., Detection of magnetic field intensity by sea turtles, Nature, 1996, vol. 380, pp. 59–61.

    Article  CAS  Google Scholar 

  • Lohmann, K.J., Lohmann, C.M.F., and Endres, C.S., The sensory ecology of ocean navigation, J. Exp. Biol., 2008, vol. 211, pp. 1719–1728.

    Article  PubMed  Google Scholar 

  • Lohmann, K.J., Pentcheff, N., Nevitt, G., Stetten, G., Zimmer-Faust, R., Jarrard, H., and Boles, L., Magnetic orientation of spiny lobsters in the ocean: experiments with undersea coil systems, J. Exp. Biol., 1995, vol. 198, pp. 2041–2048.

    PubMed  Google Scholar 

  • Lowenstam, H.A., Magnetite in denticle capping in recent chitons (Polyplacophora), Geol. Soc. Am. Bull., 1962, vol. 73, pp. 435–438.

    Article  CAS  Google Scholar 

  • Macdonald, K.C., Miller, S.P., Huestis, S.P., and Spiess, E.N., Three-dimensional modeling of a magnetic reversal boundary from inversion of deep-tow measurements, J. Geophys. Res., 1980, vol. 85, pp. 3670–3680.

    Article  Google Scholar 

  • Malinin, L.K., Migratsii i orientatsiya ryb (Fish Migrations and Orientation), Moscow: Znanie, 1981.

    Google Scholar 

  • Mann, S., Sparks, N.H., Walker, M.M., and Kirschvink, J.L., Ultrastructure morphology and organization of biogenic magnetite from sockeye salmon, Onchorhynehus nerka: implications for magnetoreception, J. Exp. Biol., 1988, vol. 140, pp. 35–49.

    CAS  PubMed  Google Scholar 

  • McCleave, J.D. and Power, J.H., Influence of weak electric and magnetic fields on turning behavior in elvers of the American eel Anguilla rostrata, Mar. Biol., 1978, vol. 46, pp. 29–34.

    Article  Google Scholar 

  • McCleave, J.D., Rommel, S.A., and Cathcart, S.L., Weak electric and magnetic fields in fish orientation, Ann. N.Y. Acad. Sci., 1971, vol. 188, pp. 270–282.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, C.G., Holland, K.N., and Papastamatiou, Y.P., Sharks can detect changes in the geomagnetic field, J. R. Soc., Interface, 2005, vol. 2, pp. 129–130.

    Article  Google Scholar 

  • Mironov, A.T., Electric currents in a sea and their effect on fishes, Tr. Mor. Gidrofiz. Inst. Akad. Nauk SSSR, 1948, vol. 1, pp. 56–74.

    Google Scholar 

  • Murray, R.W., Electrical sensitivity of the ampullae of Lorenzini, Nature, 1960, vol. 187, p. 957.

    Article  CAS  PubMed  Google Scholar 

  • New, J.G., The evolution of vertebrate electrosensory systems, Brain Behav. Evol., 1997, vol. 50, pp. 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Nishi, T., Kawamura, G., and Matsumoto, K., Magnetic sense in the Japanese eel, Anguilla japonica, as determined by conditioning and electrocardiography, J. Exp. Biol., 2004, vol. 207, pp. 2965–2970.

    Article  PubMed  Google Scholar 

  • Northcutt, R.G., Brain organization in the cartilaginous fishes, in Sensory Biology of Sharks, Skates, and Rays, Washington, DC: Gov. Print. Off., 1978, pp. 107–193.

    Google Scholar 

  • O’Connell, C.P., Abel, D.C., Gruber, S.H., Stroud, E.M., and Rice, P.H., Response of juvenile lemon sharks, Negaprion brevirostris, to a magnetic barrier simulating a beach net, Ocean Coast. Manage., 2011, vol. 54, pp. 225–230.

    Article  Google Scholar 

  • Paulin, M.G., Electroreception and the compass sense of sharks, J. Theor. Biol., 1995, vol. 174, pp. 325–339.

    Article  Google Scholar 

  • Phillips, J.B. and Borland, S.C., Behavioural evidence for use of a light-dependent magnetoreception mechanism in a vertebrate, Nature, 1992, vol. 359, pp. 142–144.

    Article  Google Scholar 

  • Poddubnyi, A.G., Some results of remote observations for behavior of migrating fishes, in Bionika (Bionics), Moscow: Nauka, 1965, pp. 255–263.

    Google Scholar 

  • Protasov, V.R., Bondarchuk, A.I., and Ol’shanskii, V.M., Vvedenie v elektroekologiyu (Introduction to Electric Ecology), Moscow: Nauka, 1982.

    Google Scholar 

  • Protasov, V.R., Shneer, V.S., and Fonarev, G.A., The effect of natural electric fields in a sea on behavior and distribution of fishes, Zool. Zh., 1975, vol. 54, no. 7, pp. 1098–1101.

    Google Scholar 

  • Quinn, T.P., Evidence for celestial and magnetic compass orientation in lake migrating sockeye salmon fry, J. Comp. Physiol., A, 1980, vol. 137, pp. 243–248.

    Article  Google Scholar 

  • Quinn, T.P. and Brannon, E.L., The use of celestial and magnetic cues by orienting sockeye salmon smolts, J. Comp. Physiol., A, 1982, vol. 147, pp. 547–552.

    Article  Google Scholar 

  • Quinn, T.P., Merrill, R.T., and Brannon, E.L., Magnetic field detection in sockeye salmon, J. Exp. Zool., 1981, vol. 217, pp. 137–142.

    Article  Google Scholar 

  • Ritz, T., Adem, S., and Schulten, K., A model for photoreceptor-based magnetoreception in birds, Biophys. J., 2000, vol. 78, pp. 707–718.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riveros, A.J. and Srygley, R.B., Magnetic compasses in insects, in Encyclopedia of Animal Behavior, Oxford: Academic, 2010, pp. 305–313.

    Chapter  Google Scholar 

  • Rodgers, C.T. and Hore, P.J., Chemical magnetoreception in birds: the radical pair mechanism, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, pp. 353–360.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rommel, S.A. and McCleave, J.D., Sensitivity of American eels (Anguilla rostrata) and Atlantic salmon (Salmo salar) to weak electric and magnetic fields, J. Fish. Res. Bd. Can., 1973, vol. 30, pp. 657–663.

    Article  Google Scholar 

  • Sadowski, M., Winnicki, A., Formicki, K., Sobotinski, A., and Tanski, A., The effect of magnetic field on permeability of egg shells of salmonid fishes, Acta Ichthyol. Piscat., 2007, vol. 37, no. 2, pp. 129–135.

    Article  Google Scholar 

  • Skauli, K.S., Reitan, J.B., and Walther, B.T., Hatching in zebrafish (Danio rerio) embryos exposed to a 50 Hz magnetic field, Bioelectromagnetics, 2000, vol. 21, pp. 407–410.

    Article  CAS  PubMed  Google Scholar 

  • Skiles, D.D., The geomagnetic field: its nature, history and biological relevance, in Magnetite Biomineralization and Magnetoreception by Living Organisms: A New Biomagnetism, New York: Plennum, 1985, pp. 43–102.

    Chapter  Google Scholar 

  • Souza, J.J., Poluhowich, J.J., and Guerra, R.J., Orientation responses of American eels, Anguilla rostrata, to varying magnetic fields, Comp. Biochem. Physiol., Part A: Mol. Integr. Physiol., 1988, vol. 90, pp. 57–61.

    Article  CAS  Google Scholar 

  • Strand, J.A., Abernethy, C.S., Skalski, J.R., and Qenoway, R.G., Effects of magnetic field exposure on fertilization success in rainbow trout, Salmo gairdneri, Bioelectromagnetics, 1983, vol. 4, pp. 295–301.

    Article  CAS  Google Scholar 

  • Sundstrom, L.F., Gruber, S.H., Clermont, S.M., Correia, J.P.S., de Marignac, J.R.C., Morrissey, J.F., Lowrance, C.R., Thomassen, L., and Oliveira, M.T., Review of elasmobranch behavioral studies using ultrasonic telemetry with special reference to the lemon shark, Negaprion brevirostris, around Bimini Islands, Bahamas, Environ. Biol. Fish., 2001, vol. 60, pp. 225–250.

    Article  Google Scholar 

  • Talikina, M.G., Izyumov, Yu.G., and Krylov, V.V., Response of animal and vegetative cells to the effect of a typical magnetic storm, Izv., Atmos. Ocean. Phys., 2013a, vol. 49, no. 8, pp. 779–783.

    Article  Google Scholar 

  • Talikina, M.G., Krylov, V.V., Izyumov, Yu.G., and Chebotareva, Yu.V., The effect of a typical magnetic storm on mitosis in the embryo cells and the length and weight of roach (Rutilus rutilus L.) prolarvae, Inland Water Biol., 2013b, vol. 6, no. 1, pp. 48–51.

    Article  Google Scholar 

  • Tricas, T.C., The neuroecology of the elasmobranch electrosensory world: why peripheral morphology shapes behavior, Environ. Biol. Fish., 2001, vol. 60, pp. 77–92.

    Article  Google Scholar 

  • Ueda, K., Maeda, Y., Koyama, M., Yaskawa, K., and Tokui, T., Magnetic remanences in salmonid fish, Bull. Jpn. Soc. Sci. Fish., 1986, vol. 52, pp. 193–198.

    Article  Google Scholar 

  • Walcott, C., Gould, J.L., and Kirschvink, J.L., Pigeons have magnets, Science, 1979, vol. 205, pp. 1027–1029.

    Article  CAS  PubMed  Google Scholar 

  • Walker, M.M., Learned magnetic field discrimination in yellowfin tuna, Thunnus albacores, J. Comp. Physiol., A, 1984, vol. 155, pp. 673–679.

    Article  Google Scholar 

  • Walker, M.M., A model for encoding of magnetic field intensity by magnetite-based magnetoreceptor cells, J. Theor. Biol., 2008, vol. 250, pp. 85–91.

    Article  CAS  PubMed  Google Scholar 

  • Walker, M.M., Magnetic sense in fishes, in Encyclopedia of Fish Physiology from Genome to Environment, San Diego: Academic, 2011, pp. 726–735.

    Chapter  Google Scholar 

  • Walker, M.M., Diebel, C.E., Haugh, C.V., Pankhurst, P.M., Montgomery, J.C., and Green, C.R., Structure and function of the vertebrate magnetic sense, Nature, 1997, vol. 390, pp. 371–376.

    Article  CAS  PubMed  Google Scholar 

  • Walker, M.M., Kirschvink, J.L., Chang, S.B., and Dizon, A.E., A candidate magnetic sense organ in the yellowfin tuna, Thunnus albacores, Science, 1984, vol. 224, pp. 751–753.

    Article  CAS  PubMed  Google Scholar 

  • Walker, M.M., Quinn, T.P., Kirschvink, J.L., and Groot, C., Production of single-domain magnetite throughout life by sockeye salmon, Onchorhynehus nerka, J. Exp. Biol., 1988, vol. 140, pp. 51–63.

    CAS  Google Scholar 

  • Wiltschko, W. and Wiltschko, R., Magnetic orientation and magnetoreception in birds and other animals, J. Comp. Physiol., A, 2005, vol. 191, pp. 675–693.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Krylov.

Additional information

Original Russian Text © V.V. Krylov, Yu.G. Izyumov, E.I. Izvekov, V.A. Nepomnyashchikh, 2013, published in Zhurnal Obshchei Biologii, 2013, Vol. 74, No. 5, pp. 354–365.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, V.V., Izyumov, Y.G., Izvekov, E.I. et al. Magnetic fields and fish behavior. Biol Bull Rev 4, 222–231 (2014). https://doi.org/10.1134/S2079086414030049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086414030049

Keywords

Navigation