Skip to main content
Log in

Two paradigms in mathematical population biology: An attempt at synthesis

  • Published:
Biology Bulletin Reviews Aims and scope Submit manuscript

Abstract

However popular the slogan of nonlinear ecological interactions has been in theory, practical ecology professes the projection matrix paradigm, which is essentially linear, i.e., the linear matrix model paradigm for discrete structured population dynamics. The dominant eigenvalue λ1 of projection matrix L is considered the growth potential of a population. It provides for a quantitative measure of species adaptation to the given environment, with the measure being adequate and precise, given data of the “identified individuals” type. The case of “identified individuals with uncertain parents” gives rise to uncertainty in the status-specific reproduction rates, which is eliminated in a unique way (for a broad class of structures and life cycle graphs) by maximizing λ1(L) under the constraints ensuing from the data on and knowledge about species biology. The paradigm of linearity gives way to the nonlinear models when species interactions such as competition for shared resources are to be modeled and where the outcome of interaction depends on the population structure of the competitors. This circumstance dictates the need for synthesis of the two paradigms, which is achieved in nonlinear matrix operators as models of interaction between the species whose populations are discrete-structured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akçkaya, R.H., Burgman, M.A., and Ginzburg, L.R., Applied Population Ecology: Principles and Computer Exercises using RAMAS EcoLab 2.0, 2nd ed., Sunderland, MA: Sinauer, 1999.

    Google Scholar 

  • Begon, M., Harper, J.L., and Townsend, C.R., Ecology. Individuals, Populations and Communities. 3rd ed., Oxford: Blackwell Sci. Publ, 1996.

    Google Scholar 

  • Bernardelli, H., Population Waves, J. Burma Res. Soc., 1941, vol. 31, pp. 1–18.

    Google Scholar 

  • Brewster-Geisz, K.K. and Miller, T.J., Management of the Sandbar Shark, Carcharhinus plumbeus: Implications of a Stage-Based Model, Fish. Bull., 2000, vol. 98, pp. 236–249.

    Google Scholar 

  • Caswell, H., Matrix Population Models: Construction, Analysis, and Interpretation, Sunderland, MA: Sinauer Associates, 1989.

    Google Scholar 

  • Caswell, H., Matrix Population Models: Construction, Analysis, and Interpretation, 2nd ed., Sunderland, MA: Sinauer Associates, 2001.

    Google Scholar 

  • Chistyakova, A.A., Betala pendula, in Diagnozy i klyuchi vozrastnykh sostoyanii lesnykh rastenii. Derev’ya i kustarniki: metodicheskie razrabotki dlya studentov biologicheskikh spetsial’nostei (Diagnoses and Keys to the Age of Forest Plants. Trees and Shrubs: Methodological Development for Students of Biological Disciplines), Moscow: Prometei, 1989, pp. 69–76.

    Google Scholar 

  • Csetenyi, A.I. and Logofet, D.O., Leslie Model Revisited: Some Generalizations for Block Structures, Ecol. Model., 1989, vol. 48, pp. 277–290.

    Article  Google Scholar 

  • Cull, P. and Vogt, A., The Periodic Limits for the Leslie Model, Math. Biosci., 1974, vol. 21, pp. 39–54.

    Article  Google Scholar 

  • Cushing, J.M. and Yicang, Z., The Net Reproductive Value and Stability in Matrix Population Models, Natur. Res. Model., 1994, vol. 8, pp. 297–333.

    Google Scholar 

  • Cushing, J.M., Henson, S.M., and Blackburn, C.C., Multiple Mixed-Type Attractors in Competition Models, J. Biol. Dynam., 2007, vol. 1, no. 4, pp. 347–362.

    Article  Google Scholar 

  • Cushing, J.M., Le Varge, S., Chitnis, N., and Henson, S.M., Some Discrete Competition Models and the Competitive Exclusion Principle, J. Diff. Equat. Applic., 2004, vol. 10, nos. 13–15, pp. 1139–1151.

    Article  Google Scholar 

  • Falin-ska, K., Plant Demography in Vegetation Succession, Dortrecht: Kluwer Acad. Publ., 1991.

    Book  Google Scholar 

  • Feigenbaum, M.J., Quantitative Universality for a Class of Nonlinear Transformations, J. Stat. Phys., 1978, vol. 19, no. 1, p. 25.

  • Feigenbaum, M.J., The Universal Metric Properties of Nonlinear Transformations, J. Stat. Phys., 1979, vol. 21, no. 6, p. 669.

    Article  Google Scholar 

  • Gantmakher, F.R., Teoriya matrits (The Theory of Matrices), Moscow: Nauka, 1967.

    Google Scholar 

  • Geramita, J.M. and Pullman, N.J., An Introduction to the Application of Nonnegative Matrices to Biological Systems, Queen’s Papers in Pure and Applied Mathematics no. 68, Kingston, Ontario, Canada: Queen’s Univ., 1984.

    Google Scholar 

  • Goel, N.S., Maitra, S.C., and Montroll, E.W., On the Volterra and Other Nonlinear Models of Interacting Populations, Rev. Modern Phys., 1971, vol. 43, pp. 231–276.

    Article  Google Scholar 

  • Goodman, L.A., The Analysis of Population Growth When the Birth and Death Rates Depend upon Several Factors, Biometrics, 1969, vol. 25, pp. 659–681.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, P.E., Leslie Matrix Models: a Mathematical Survey, in Papers on Mathematical Ecology, Csetenyi, A.I., Ed., Budapest: Karl Marx Univ. Economics, 1986, pp. 54–106.

    Google Scholar 

  • Harary, F., Norman, R.Z., and Cartwright, D., Structural Models: an Introduction to the Theory of Directed Graphs, New York: John Wiley, 1965.

    Google Scholar 

  • Horn, R.A. and Johnson, C.R., Matrix Analysis, Cambridge: Cambridge Univ. Press, 1990.

    Google Scholar 

  • Impagliazzo, J., Deterministic Aspects of Mathematical Demography: An Investigation of Stable Population Theory Including an Analysis of the Population Statistics of Denmark. Biomathematics, Berlin: Springer, 1985, vol. 13.

    Google Scholar 

  • Jørgensen, S.E. and Bendoricchio, G., Fundamentals of Ecological Modelling, 3rd ed., Amsterdam: Elsevier, 2001.

    Google Scholar 

  • Jørgensen, S.E., Fundamentals of Ecological Modelling. Developments in Environmental Modelling, Amsterdam: Elsevier, 1986, vol. 9.

    Google Scholar 

  • Jury, E.I., Inners and Stability of Dynamic Systems, New York: Wiley, 1974. Translated under the title Innory i ustoichivost’ dinamicheskikh system, Moscow: Nauka, 1979.

    Google Scholar 

  • Klochkova, I.N., Generalization of the Theorem on the Reproductive Potential for Logofet Matrices, Vestn. Mosk. Univ., Ser. 1: Matem. Mekhan. 2004, no. 3, pp. 45–48.

  • Kon, R., Permanence of Discrete-Time Kolmogorov Systems for Two Species and Saturated Fixed Points, J. Math. Biol., 2004, vol. 48, pp. 57–81.

    Article  PubMed  Google Scholar 

  • Korn, G. and Korn, T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov (Mathematical Handbook for Scientists and Engineers), Moscow: Nauka, 1973.

    Google Scholar 

  • Law, R., A Model for the Dynamics of a Plant Population Containing Individuals Classified by Age and Size, Ecology, 1983, vol. 64, pp. 224–230.

    Article  Google Scholar 

  • Lefkovitch, L.P., The Study of Population Growth in Organisms Grouped by Stages, Biometrics, 1965, vol. 21, pp. 1–18.

    Article  Google Scholar 

  • Leslie, P.H., On the Use of Matrices in Certain Population Mathematics, Biometrika, 1945, vol. 33, pp. 183–212.

    Article  PubMed  CAS  Google Scholar 

  • Leslie, P.H., Some Further Notes on the Use of Matrices in Population Mathematics, Biometrika, 1948, vol. 35, pp. 213–245.

    Google Scholar 

  • Lewis, E.G., On the Generation and Growth of a Population, Sankhya. Indian J. Statistics, 1942, vol. 6, pp. 93–96.

    Google Scholar 

  • Li, C.-K. and Schneider, H., Application of Perron-Frobenius Theory to Population Dynamics, J. Math. Biol., 2002, vol. 44, no. 5, pp. 450–462.

    Article  PubMed  Google Scholar 

  • Li, T.-Y. and Yorke, J.A., Period Three Implies Chaos, Amer. Math. Monthly, 1975, vol. 82, pp. 982–985.

    Article  Google Scholar 

  • Lieffers, V.J., Macdonald, S.E., and Hogg, E.H., Ecology of and Control Strategies for Calamagrostis canadensis in Boreal Forest Sites, Can. J. For. Res., 1993, vol. 23, pp. 2070–2077.

    Article  Google Scholar 

  • Logofet, D.O. and Belova, I.N., Nonnegative Matrices as a Tool for Modeling Population Dynamics: Classical Models and Contemporary Expansions, Fundam. Prikl. Matem., 2007, vol. 13, no. 4, pp. 145–164.

    Google Scholar 

  • Logofet, D.O. and Klochkova, I.N., Mathematics of the Lefkovich Model: Reproductive Potential and Asymptotic Cycles, Mat. Model., 2002, vol. 14, no. 10, pp. 116–126.

    Google Scholar 

  • Logofet, D.O., Matrices and Graphs: Stability Problems in Mathematical Ecology, Boca Raton, FL: CRC Press, 1993.

    Google Scholar 

  • Logofet, D.O., Convexity in Projection Matrices: Projection to a Calibration Problem, Ecol. Model., 2008, vol. 216, no. 2, pp. 217–228.

    Article  Google Scholar 

  • Logofet, D.O., On the Indecomposability and Imprimitivity of Non-Negative Matrices of a Block Structure, Dokl. Akad. Nauk, 1989, vol. 308, no. 1, pp. 46–49.

    Google Scholar 

  • Logofet, D.O., Once Again about the Nonlinear Leslie Model: Asymptotic Behavior of a Trajectory, Dokl. Akad. Nauk, 1991a, vol. 318, no. 5, pp. 1077–1081.

    Google Scholar 

  • Logofet, D.O., Paths and Cycles in the Digraph as Tools for Characterization of Certain Classes of Matrices, Dokl. Akad. Nauk, 1999, vol. 367, no. 3, pp. 295–298.

    CAS  Google Scholar 

  • Logofet, D.O., Svirezhev’s Principle of Substitution and Matrix Models of the Dynamics of Populations with a Complex Structure, Zh. Obshch. Biol., 2010, vol. 71, no. 1, pp. 30–40.

    PubMed  CAS  Google Scholar 

  • Logofet, D.O., The Theory of Matrix Models of Population Dynamics with Age and Additional Structures, Zh. Obshch. Biol., 1991b, vol. 52, no. 6, pp. 793–804.

    Google Scholar 

  • Logofet, D.O., Three Sources and Three Component Parts of the Formalism of a Population with Discrete Stage and Age Structures, Mat. Model., 2002, vol. 14, no. 12, pp. 11–22.

    Google Scholar 

  • Logofet, D.O., Ulanova, N.G., Klochkova, I.N., and Demidova, A.N., Structure and Dynamics of a Clonal Plant Population: Classical Model Results in a Non-Classic Formulation, Ecol. Modell., 2006, vol. 192, pp. 95–106.

    Article  Google Scholar 

  • May, R.M., Stability and Complexity in Model Ecosystems, Princeton: N.J.: Princeton Univ. Press, 1973.

    Google Scholar 

  • May, R.M., Biological Populations Obeying Difference Equations: Stable Points, Stable Cycles and Chaos, J. Theor. Biol., 1975, vol. 51, no. 2, pp. 511–524.

    Article  PubMed  CAS  Google Scholar 

  • Maybee, J.S., Olesky, D.D., Van Den Driessche, P., and Wiener, G., Matrices, Digraphs, and Determinants, SIAM J. Matrix Anal. Appl., 1989, vol. 10, pp. 500–519.

    Article  Google Scholar 

  • Mirkin, B.M. and Naumova, L.G., Nauka o rastitel’nosti: istoriya i sovremennoe sostoyanie osnovnykh kontseptsii (The Science about Vegetation: The History and Current State of the Main Concepts), Ufa: Gilem, 1998.

    Google Scholar 

  • Mokrova, O.V., The Nonlinear Model of Competition between Two Populations with a Structure: The Search for Balance, Diploma Work, Moscow: Moscow State University, 2010.

    Google Scholar 

  • Nedorezov, L.V., Sadykov, A.M., and Sadykova, D.L., The Dynamics of Abundance of the Green Oak Leaf Roller: The Use of Discrete-Continuous Models with Density-Dependent Nonmonotonic Birth Rate, Zh. Obshch. Biol., 2010, vol. 71, no. 1, pp. 41–51.

    PubMed  CAS  Google Scholar 

  • Pimm, S.L., Food Webs, London: Chapman Hall, 1982.

    Google Scholar 

  • Pyšek, P., Pattern of Species Dominance and Factors Affecting Community Composition in Areas Deforested Due to Air Pollution, Vegetatio, 1994, vol. 112, pp. 45–56.

    Article  Google Scholar 

  • Rabotnov, T.A., About Coenotical Populations of Plant Species Belonging to the Plant Communities Which Succeed Each Other in Successions, Bot. Zh., 1995, vol. 80, no. 7, pp. 67–72.

    Google Scholar 

  • Rebele, F. and Lehmann, C., Biological Flora of Central Europe: Calamagrostis epigejos (L.) Roth., Flora, 2001, vol. 196, pp. 325–344.

    Google Scholar 

  • Salguero-Gómez, R. and Casper, B.B., Keeping Plant Shrinkage in the Demographic Loop, J. Ecol., 2010, vol. 98, no. 2, pp. 312–323.

    Article  Google Scholar 

  • Seneta, E., Non-Negative Matrices and Markov Chains, 2nd ed., New York: Springer-Verlag, 1981, Chap. 3.

    Google Scholar 

  • Shapiro, A.P. and Luppov, S.P., Rekurrentnye uravneniya v teorii populyatsionnoi biologii (Recurrence Equations in the Theory of Population Biology), Moscow: Nauka, 1983.

    Google Scholar 

  • Sharkovskii, A.N., Coexistence of Cycles with a Continuous Mapping of a Straight Line in Itself, Ukr. Matem. Zh., 1964, vol. 16, pp. 61–71.

    Google Scholar 

  • Smirnova, O.V., Bobrovskii, M.V., and Khanina, L.G., Assessment and Prediction of Successional Processes in Forest Cenoses on the Basis of Demographic Methods, Byul. MOIP. Otd. Biol., 2001, vol. 106, no. 5, pp. 25–33.

    Google Scholar 

  • Smirnova, O.V., Chistyakova, A.A., Zaugolnova, L.B., Evstigneev, O.I., Popadiouk, R.V., and Romanovsky, A.M., Ontogeny of Tree, Bot. Zh., 1999, vol. 84, no. 12, pp. 8–20.

    Google Scholar 

  • Svirezhev, Yu.M. and Logofet, D.O., Ustoichivost’ biologicheskikh soobshchestv (Stability of Biological Communities), Moscow: Nauka, 1978.

    Google Scholar 

  • Svirezhev, Yu.M., Vito Volterra and Modern Mathematical Ecology, in Vol’terra V. Matematicheskaya teoriya bor’by za sushchestvovanie (V. Volterra. Mathematical Theory of the Struggle for Existence), Moscow: Nauka, 1976, pp. 245–286.

    Google Scholar 

  • Takada, T. and Hara, T., The Relationship between the Transition Matrix Model and the Diffusion Model, J. Math. Biol., 1994, vol. 32, pp. 789–807.

    Article  Google Scholar 

  • Ulanova, N.G., Calamagrostis epigeios, in Biologicheskaya flora Moskovskoi oblasti (Biological Flora of Moscow Region), Moscow: Izd. Mosk. Univ. and “Argus”, 1995, vol. 10, pp. 4–19.

    Google Scholar 

  • Ulanova, N.G., Belova, I.N., and Logofet, D.O., Competition among Populations with Discrete Structure: The Dynamics of Populations of Reed and Birch Growing Together, Zh. Obshch. Biol., 2008, vol. 69, no. 6, pp. 478–494.

    Google Scholar 

  • Ulanova, N.G., Demidova, A.N., Logofet, D.O., and Klochkova, I.N., Structure and Dynamics of Calamagrostis canescens Coenopopulation: A Model Approach, Zh. Obshch. Biol., 2002, vol. 63, no. 6, pp. 509–521.

    PubMed  CAS  Google Scholar 

  • Ulanova, N.G., Plant Age Stages during Succession in Woodland Clearing in Central Russia, in Vegetation Science in Retrospect and Perspective, White, P.S., Mucina, L., Leps, J., and Maarel Van Der, E., Eds., Uppsala: Opulus, 2000, pp. 80–83.

    Google Scholar 

  • Ulanova, N.G., Zhukovskaya, O.V., Kuksina, N.V., and Demidova, A.N., Structure and Dynamics of Populations of White Birch (Betula pendula Roth.) in Calamagrostis epigeios Phytocenoses of Clear Cuttings of Spruce Forests of Kostroma Region, Byul. MOIP. Otd. Biol., 2005, vol. 110, no. 5, pp. 27–35.

    Google Scholar 

  • Usher, M.B., Developments in the Leslie Matrix Models, in Mathematical Models in Ecology, Jeffre, J.N.R., Ed., Oxford: Blackwell, 1972, pp. 29–60.

    Google Scholar 

  • Vasilevich, V.I., Ocherki teoreticheskoi fitotsenologii (Essays in Theoretical Phytocenology), Leningrad: Nauka, 1983.

    Google Scholar 

  • Voevodin, V.V. and Kuznetsov, Yu.A., Matritsy i vychisleniya (Matrices and Computation), Moscow: Nauka, 1984.

    Google Scholar 

  • Volterra, V., Lecons sur la Theorie Mathematique de la Lutte pour la Vie, Paris: Gauthier-Villars, 1931.

    Google Scholar 

  • Werner, P.A. and Caswell, H., Population Growth Rates and Age Versus Stage-Distribution Models for Teasel (Dipsacus sylvestris Huds.), Ecology, 1977, vol. 58, pp. 1103–1111.

    Article  Google Scholar 

  • Wikan, A., From Chaos to Chaos. An Analysis of a Discrete Age-Structured Prey-Predator Model, J. Math. Biol., 2001, vol. 43, pp. 471–500.

    Article  PubMed  CAS  Google Scholar 

  • Yakobson, M.V., The Properties of One-Parameter Family of Dynamical Systems xAx*exp(-x), Ukr. Matem. Zh., 1976, vol. 31, no. 2, pp. 239–240.

    Google Scholar 

  • Zhdanova, O.L. and Frisman, E.Ya., Nonlinear Dynamics of Population Abundance: The Effect of Complexitwy of the Age Structure on the Scenario of Transition to Chaos, Zh. Obshch. Biol., 2011, vol. 72, no. 3, pp. 214–228.

    PubMed  CAS  Google Scholar 

  • Zuidema, P.A., Brienen, R.J.W., During, H.J., and Guneralp, B., Do Persistently Fast-Growing Juveniles Contribute Disproportionately to Population Growth? A New Analysis Tool for Matrix Models and Its Application to Rainforest Trees, Am. Natur., 2009, vol. 174, no. 5, pp. 709–719.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. O. Logofet.

Additional information

Original Russian Text © D.O. Logofet, N.G. Ulanova, I.N. Belova, 2011, published in Zhurnal Obshchei Biologii, 2011, Vol. 72, No. 5, pp. 369–387.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Logofet, D.O., Ulanova, N.G. & Belova, I.N. Two paradigms in mathematical population biology: An attempt at synthesis. Biol Bull Rev 2, 89–104 (2012). https://doi.org/10.1134/S2079086412010021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079086412010021

Keywords

Navigation