Skip to main content
Log in

Permanence of discrete-time Kolmogorov systems for two species and saturated fixed points

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract.

This paper considers the dynamics of a discrete-time Kolmogorov system for two-species populations. In particular, permanence of the system is considered. Permanence is one of the concepts to describe the species’ coexistence. By using the method of an average Liapunov function, we have found a simple sufficient condition for permanence of the system. That is, nonexistence of saturated boundary fixed points is enough for permanence of the system under some appropriate convexity or concavity properties for the population growth rate functions. Numerical investigations show that for the system with population growth rate functions without such properties, the nonexistence of saturated boundary fixed points is not sufficient for permanence, actually a boundary periodic orbit or a chaotic orbit can be attractive despite the existence of a stable coexistence fixed point. This result implies, in particular, that existence of a stable coexistence fixed point is not sufficient for permanence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, H.M., Hutson, V., Law, R.: On the conditions for permanence of species in ecological communities. The American Naturalist 139, 663–668 (1992)

    Article  Google Scholar 

  2. Beddington, J.R., Free, C.A., Lawton, J.H.: Dynamic complexity in predator-prey models framed in difference equations. Nature 255, 58–60 (1975)

    Google Scholar 

  3. Franke, J.E., Yakubu, A.-A.: Mutual exclusion versus coexistence for discrete competitive systems. J. Math. Bio. 30, 161–168 (1991)

    MathSciNet  MATH  Google Scholar 

  4. Gard, T.C.: Uniform persistence in multispecies population models. Math. Biosci. 85, 96–104 (1987)

    Article  Google Scholar 

  5. Hadeler, K.P., Gerstmann, I.: The discrete Rosenzweig model. Math. Biosci. 98, 49–72 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hassell, M.P.: The spatial and temporal dynamics of host-parasitoid interactions. Oxford University Press, Oxford, 2000

  7. Hofbauer, J., Hutson, V., Jansen, W.: Coexistence for systems governed by difference equations of Lotka-Volterra type. J. Math. Bio. 25, 553–570 (1987)

    MathSciNet  MATH  Google Scholar 

  8. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics. Cambridge University Press, Cambridge, 1998

  9. Hutson, V.: A theorem on average Liapunov functions. Monatshefte für Mathematik 98, 267–275 (1984)

    MATH  Google Scholar 

  10. Hutson, V., Law, R.: Permanent coexistence in general models of three interacting species. J. Math. Bio. 21, 285–298 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Hutson, V., Moran, W.: Persistence of species obeying difference equations. J. Math. Bio. 15, 203–213 (1982)

    MathSciNet  MATH  Google Scholar 

  12. Kon, R., Takeuchi, Y.: The effect of evolution on host-parasitoid systems. J. Theor. Bio. 209, 287–302 (2001)

    Article  Google Scholar 

  13. Kon, R., Takeuchi, Y.: Permanence of host-parasitoid systems. Nonlinear Analysis: Theory, Methods & Applications 47, 1383–1393 (2001)

    Google Scholar 

  14. Kon, R., Takeuchi, Y.: Permanence of 2-host 1-parasitoid systems. J. Dyn. Continuous, Disc. Impul. Syst. 10, 389–402 (2003)

    Google Scholar 

  15. Kot, M.: Elements of mathematical ecology. Cambridge University Press, Cambridge, 2002

  16. Lu, Z., Wang, W.: Permanence and global attractivity for Lotka-Volterra difference systems. J. Math. Bio. 39, 269–282 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mangasarian, O.L.: Nonlinear Programming. Society for Industrial and Applied Mathematics, Philadelphia, 1969

  18. May, R.M., Oster, G.F.: Bifurcations and dynamics complexity in simple ecological models. The American Naturalist 110, 573–599 (1976)

    Article  Google Scholar 

  19. Mukherjee, D., Bhakta, P.C., Roy, A.B.: Uniform persistence in Kolmogorov models with convex growth functions. Nonlinear Analysis: Theory, Methods & Applications 34, 427–432 (1998)

    Google Scholar 

  20. Neubert, M.G., Kot, M.: The subcritical collapse of predator populations in discrete-time predator-prey models. Math. Biosci. 110, 45–66 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruel, J.J., Ayres, M.P.: Jensen’s inequality predicts effects of environmental variation. Trends in Ecology & Evolution 14, 361–366 (1999)

    Google Scholar 

  22. Schreiber, S.J.: Criteria for C r robust permanence. J. Diff. Eqs. 162, 400–426 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryusuke Kon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kon, R. Permanence of discrete-time Kolmogorov systems for two species and saturated fixed points. J. Math. Biol. 48, 57–81 (2004). https://doi.org/10.1007/s00285-003-0224-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00285-003-0224-8

Keywords

Navigation