Skip to main content
Log in

Systems biology analysis of the WOX5 gene and its functions in the root stem cell niche

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The WUSCHEL-RELATED HOMEOBOX 5 (WOX5) gene encodes the transcription factor, which is one of the key regulators maintaining the structure and functioning of the stem cell niche in plant root tips. WOX5 is expressed in the quiescent center of the root apical meristem, preventing the differentiation of the columella initials and, together with SCR, SHR, PLT1, and PLT2, participating in controlling the differentiation of other initials of the root meristem. However, the details of the WOX5 functioning are unclear. The WOX5 protein belongs to the WUSCHEL-related homeobox (WOX) family, the founder of which is the transcription factor WUSCHEL (WUS), maintaining the stem cell niche in the shoot apical meristem. WOX5 and WUS diverged from a common ancestor at the base of angiosperms, which resulted in a specialization of the shoot and root stem cell niches. However, the WOX5 structural and functional divergence during angiosperm evolution has been poorly addressed. In this review we present a systems biology analysis of the WOX5 gene to reveal specific features of its evolution and functioning. For this, we performed a phylogenetic analysis on 62 publicly available WOX5 amino acid sequences, integrated published data about WOX5 expression domain in Arabidopsis and other species and its role in development, and summarize the results of experiments on primary and secondary targets for this transcription factor. The data on the possible mechanisms of direct and indirect regulation of WOX5 expression were discussed. In particular, we analyzed the WOX5 promoter regions from 30 species. Possible direct regulators of WOX5 gene expression were proposed based on the presence of putative binding sites for the candidate transcription factors in the conserved WOX5 promoter regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aichinger, E., Kornet, N., Friedrich, T., and Laux, T, Plant stem cell niches, Ann. Rev. Plant Biol., 2012, vol. 63, pp. 615–636. doi 10.1146/annurevarplant-042811-105555

    Article  CAS  Google Scholar 

  • Atta, R., Laurens, L., Boucheron-Dubuisson, E., Guivarc’h, A., Carnero, E., Giraudat-Pautot, V., Rech, P., and Chriqui, D, Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro, Plant J., 2009, vol. 57, pp. 626–644. doi 10.1111/j.1365-313x.2008.03715.x

    Article  CAS  Google Scholar 

  • Baima, S., Nobili, F., Sessa, G., Lucchetti, S., Ruberti, I., and Morelli, G, The expression of the Athb-8 homeobox gene is restricted to provascular cells in Arabidopsis thaliana, Development, 1995, vol. 121, no. 12, pp. 4171–4182.

    CAS  PubMed  Google Scholar 

  • Bennett, T., Toorn, A., Sanchez-Perez, G.F., Campilho, A., Willemsen, V., Snel, B., and Scheres, B., SOMBRERO, BEARSKIN1, and BEARSKIN2 regulate root cap maturation in Arabidopsis, Plant Cell, 2010, vol. 22, pp. 640–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett, T., van den Toorn, A., Willemsen, V., and Scheres, B, Precise control of plant stem cell activity through parallel regulatory inputs, Development, 2014, vol. 141, no. 21, pp. 4055–4064. doi 10.1242/dev.110148

    Article  CAS  PubMed  Google Scholar 

  • Boyer, F. and Simon, R, Asymmetric cell divisions constructing Arabidopsis stem cell niches: The emerging role of protein phosphatases, Plant Biol. (Stuttg.), 2015, vol. 17, no. 5, pp. 935–945. doi 10.1111/plb.12352

    Article  CAS  Google Scholar 

  • Breuninger, H., Rikirsch, E., Hermann, M., Ueda, M., and Laux, T, Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo, Dev. Cell, 2008, vol. 14, no. 6, pp. 867–876.

    Article  CAS  PubMed  Google Scholar 

  • Brunoud, G., Wells, D.M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A.H., Beeckman, T., Kepinski, S., Traas, J., Bennett, M.J., and Vernoux, T, A novel sensor to map auxin response and distribution at high spatio-temporal resolution, Nature, 2012, vol. 482, no. 7383, pp. 103–106.

    Article  CAS  PubMed  Google Scholar 

  • Cao, X., Li, K., Suh, S.G., Guo, T., and Becraft, P.W, Molecular analysis of the CRINKLY4 gene family in Arabidopsis thaliana, Planta, 2005, vol. 220, no. 5, pp. 645–657.

    Article  CAS  PubMed  Google Scholar 

  • Capella, M., Ribone, P.A., Arce, A.L., and Chan, R.L, Arabidopsis thaliana HomeoBox 1 (AtHB1), a Homedomain- Leucine Zipper I (Hd-Zip I) transcription factor, is regulated by PHYTOCHROME-INTERACTING FACTOR 1 to promote hypocotyl elongation, New Phytol., 2015, vol. 207, no. 3, pp. 669–682.

    CAS  PubMed  Google Scholar 

  • Carlsbecker, A., Lee, J.Y., Roberts, C.J., Dettmer, J., Lehesranta, S., Zhou, J., Lindgren, O., Moreno-Risueno, M.A, Vatén, A., Thitamadee, S., Campilho, A., Sebastian, J., Bowman, J.L., Helariutta, Y., and Benfey, P.N., Cell signalling by microRNA165/6 directs gene dosedependent root cell fate, Nature, 2010, vol. 465, no. 7296, pp. 316–321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatfield, S.P., Capron, R., and Severino, A, Incipient stem cell niche conversion in tissue culture: Using a sys tems approach to probe early events in WUSCHEL dependent conversion of lateral root primordial into shoot meristems, Plant J., 2013, vol. 73, pp. 798–813.

    Article  CAS  PubMed  Google Scholar 

  • Che, P., Lall, S., and Howell, S.H, Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture, Planta, 2007, vol. 226, pp. 1183–1194. doi 10.1007/s00425-007-0565-4

    Article  CAS  PubMed  Google Scholar 

  • Chen, S.K., Kurdyukov, S., Kereszt, A., Wang, X.D., Gresshoff, P.M., and Rose, R.J, The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula, Planta, 2009, vol. 230, no. 4, pp. 827–840. doi 10.1007/s00425- 009-0988-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clapier, C.R. and Cairns, B.R, The biology of chromatin remodeling complexes, Annu. Rev. Biochem., 2009, vol. 78, pp. 273–304.

    Article  CAS  PubMed  Google Scholar 

  • Clark, N.M., de Luis BalaguerM.A., and Sozzani, R, Experimental data and computational modeling link auxin gradient and development in the Arabidopsis root, Front. Plant. Sci., 2014, vol. 5, p. 328. doi 10.3389/fpls.2014.00328

    Article  PubMed  PubMed Central  Google Scholar 

  • Della Rovere, F., Fattorini, L., D’Angeli, S., Veloccia, A., Falasca, G., and Altamura, M.M, Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of Arabidopsis, Ann. Bot., 2013, vol. 112, no. 7, pp. 1395–1407. doi 10.1093/aob/mct215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding, Z. and Friml, J, Auxin regulates distal stem cell differentiation in Arabidopsis roots, Proc. Natl Acad. Sci., 2010, vol. 107, no. 26, pp. 12046–12051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ditengou, F.A., Teale, W.D., Kochersperger, P., Flittner, K.A., Kneuper, I., van der Graaff, E., Nziengui, H., Pinosa, F., Li, X., Nitschke, R., Laux, T., and Palme, K, Mechanical induction of lateral root initiation in Arabidopsis thaliana, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 48, pp. 18818–18823. doi 10.1073/pnas.0807814105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorantes-Acosta, A.E. and Vielle-Calzada, J.P, The male gametophytic mutant tepitzin1 indicates a requirement of the homeobox gene WOX5 for pollen tube growth in Arabidopsis, Sex. Plant Reprod., 2006, vol. 19, no. 4, pp. 163–173.

    Article  CAS  Google Scholar 

  • Duvall, M.R., Learn, G.H.Jr., Eguiarte, L.E., and Clegg, M.T, Phylogenetic analysis of rbcL sequences identifies Acorus calamus as the primal extant monocotyledon, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 10, pp. 4641–4644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forzani, C., Aichinger, E., Sornay, E., Willemsen, V., Laux, T., Dewitte, W., and Murray, J.A., WOX5 suppresses CYCLIN D activity to establish quiescence at the center of the root stem cell niche, Curr. Biol., 2014, vol. 24, no. 16, pp. 1939–1944. doi 10.1016/j.cub.2014.07.019

  • Gagne, J.M., Song, S.K., and Clark, S.E., POLTERGEIST and PLL1 are required for stem cell function with potential roles in cell asymmetry and auxin signaling, Commun. Integr. Biol., 2008, vol. 1, no. 1, pp. 53–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, B., Wen, C., Fan, L., Kou, Y., Ma, N., and Zhao, L, A Rosa canina WUSCHEL-related homeobox gene, RcWOX1, is involved in auxin-induced rhizoid formation, Plant. Mol. Biol., 2014, vol. 86, no. 6, pp. 671–679. doi 10.1007/s11103-014-0255-0

    Article  CAS  PubMed  Google Scholar 

  • Gaut, B.S. and Doebley, J.F., DNA sequence evidence for the segmental allotetraploid origin of maize, Proc. Natl. Acad. Sci. U.S.A., 1997, vol. 94, no. 13, pp. 6809–6814.

  • Gonzali, S., Novi, G., Loreti, E., Paolicchi, F., Poggi, A., Alpi, A., and Perata, P., A turanose-insensitive mutant suggests a role for WOX5 in auxin homeostasis in Arabidopsis thaliana, Plant J., 2005, vol. 44, no. 4, pp. 633–645.

    Article  CAS  Google Scholar 

  • Grigg, S.P., Galinha, C., Kornet, N., Canales, C., Scheres, B., and Tsiantis, M, Repression of apical homeobox genes is required for embryonic root development in Arabidopsis, Curr. Biol., 2009, vol. 19, no. 17, pp. 1485–1490.

    Article  CAS  PubMed  Google Scholar 

  • Haecker, A., Gross-Hardt, R., Geiges, B., Sarkar, A., Breuninger, H., Herrmann, M., and Laux, T, Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana, Development, 2004, vol. 131, no. 3, pp. 657–668.

    Article  CAS  PubMed  Google Scholar 

  • Haider, N, The origin of the B-genome of bread wheat (Triticum aestivum L.), Genetika, 2013, vol. 49, no. 3, pp. 303–314.

    CAS  PubMed  Google Scholar 

  • Hawker, N.P. and Bowman, J.L, Roles for class III HD-Zip and KANADI genes in Arabidopsis root development, Plant Physiol., 2004, vol. 135, no. 4, pp. 2261–2270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, C., Chen, X., Huang, H., and Xu, L, Reprogramming of H3K27me3 is critical for acquisition of pluri potency from cultured Arabidopsis tissues, PLoS Genet., 2012, vol. 8. doi 10.1371/journal.pgen.1002911

  • Hedman, H., Zhu, T., von Arnold, S., and Sohlberg, J.J, Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in the conifer Picea abies reveals extensive conservation as well as dynamic patterns, BMC Plant Biol., 2013, vol. 13, p. 89. doi 10.1186/1471-2229-13-89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiratsu, K., Matsui, K., Koyama, T., and Ohme-Takagi, M, Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis, Plant J., 2003, vol. 34, no. 5, pp. 733–739.

    CAS  PubMed  Google Scholar 

  • Ikeda, M., Mitsuda, N., and Ohme-Takagi, M, Arabidopsis WUSCHEL is a bifunctional transcription factor that acts as a repressor in stem cell regulation and as an activator in floral patterning, Plant Cell, 2009, vol. 21, no. 11, pp. 3493–3505. doi 10.1105/tpc.109.069997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imin, N., Nizamidin, M., Wu, T., and Rolfe, B.G, Factors involved in root formation in Medicago truncatula, J. Exp. Bot., 2007, vol. 58, no. 3, pp. 439–451.

    Article  CAS  PubMed  Google Scholar 

  • Iwata, Y., Takahashi, M., Fedoroff, N.V., and Hamdan, S.M, Dissecting the interactions of SERRATE with RNA and DICER-LIKE 1 in Arabidopsis microRNA precursor processing, Nucleic Acids Res., 2013, vol. 41, no. 19, pp. 9129–9140. doi 10.1093/nar/gkt667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji, H., Wang, S., Li, K., Szakonyi, D., Koncz, C., and Li, X., PRL1 modulates root stem cell niche activity and meristem size through WOX5 and PLTs in Arabidopsis, Plant J., 2015, vol. 81, no. 3, pp. 399–412.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Y., Tian, H., Li, H., Yu, Q., Wang, L., Friml, J., and Ding, Z, The Arabidopsis thaliana elongator complex subunit 2 epigenetically affects root development, J. Exp. Bot., 2015. doi 10.1093/jxb/erv230

    Google Scholar 

  • Johannesson, H., Wang, Y., Hanson, J., and Engström, P, The Arabidopsis thaliana homeobox gene ATHB5 is a potential regulator of abscisic acid responsiveness in developing seedlings, Plant. Mol. Biol., 2003, vol. 51, no. 5, pp. 719–729.

    Article  CAS  PubMed  Google Scholar 

  • Joshi, T., Valliyodan, B., Wu, J.H., Lee, S.H., Xu, D., and Nguyen, H.T, Genomic differences between cultivated soybean, G. max and its wild relative G. soja, BMC Genomics, 2013, vol. 14, no. 1, p. S5. doi 10.1186/1471-2164-14-S1-S5

  • Kamiya, N., Nagasaki, H., Morikami, A., Sato, Y., and Matsuoka, M, Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem, Plant J., 2003, vol. 35, no. 4, pp. 429–441.

    Article  CAS  PubMed  Google Scholar 

  • Kasahara, H, Current aspects of auxin biosynthesis in plants, Biosci. Biotech. Biochem., 2016, vol. 80, no. 1, pp. 34–42.

    CAS  Google Scholar 

  • Kita, Y. and Kato, M, Seedling developmental anatomy of an undescribed Malaccotristicha species (Podostemaceae, subfamily Tristichoideae) with implications for body plan evolution, Plant Syst. Evol., 2005, vol. 254, nos. 3–4, pp. 221–232.

    Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K., MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets, Mol. Biol. Evol., 2016, vol. 22.

    Google Scholar 

  • Lastdrager, J., Hanson, J., and Smeekens, S, Sugar signals and the control of plant growth and development, J. Exp. Bot., 2014, vol. 65, no. 3, pp. 799–807.

    Article  CAS  PubMed  Google Scholar 

  • Laux, T., Mayer, K.F., Berger, J., and Jurgens, G, The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis, Development, 1996, vol. 122, pp. 87–96.

    CAS  PubMed  Google Scholar 

  • Lee, J. and Lee, I, Regulation and function of SOC1, a flowering pathway integrator, J. Exp. Bot., 2010, vol. 61, no. 9, pp. 2247–2254.

    Article  CAS  PubMed  Google Scholar 

  • Lee, M.M. and Schiefelbein, J., WEREWOLF, a MYBrelated protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning, Cell, 1999, vol. 99, no. 5, pp. 473–483.

    Article  CAS  PubMed  Google Scholar 

  • Lian, G., Ding, Z., Wang, Q., Zhang, D., and Xu, J, Origins and evolution of WUSCHEL-related homeobox protein family in plant kingdom, Sci. World J., 2014, vol. 2014, p. 534140. doi 10.1155/2014/534140

    Article  Google Scholar 

  • Liu, W., Han, X., Zhan, G., Zhao, Z., Feng, Y., and Wu, C, A novel sucroseregulatory MADS-box transcription factor GmNMHC5 promotes root development and nodulation in soybean (Glycine max [L.] Merr.), Int. J. Mol. Sci., 2015, vol. 16, no. 9, pp. 20657–20673. doi 10.3390/ijms160920657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmann, J.U., Hong, R.L., Hobe, M., Busch, M.A., Parcy, F., Simon, R., and Weigel, D, A molecular link between stem cell regulation and floral patterning in Arabidopsis, Cell, 2001, vol. 105, no. 6, pp. 793–803.

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi, K., Tanaka, K., Sakai, T., Sugawara, S., Kawaide, H., Natsume, M., Hanadaa, A., Yaenoa, T., Shirasua, K., Yaod, H., McSteend, P., Zhaoe, Y., Hayashif, K., Kamiyaa, Y., and Kasahara, H, The main auxin biosynthesis pathway in Arabidopsis, Proc. Natl Acad. Sci., 2011, vol. 108, no. 45, pp. 18512–18517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, K.F., Schoof, H., Haecker, A., Lenhard, M., Jurgens, G., and Laux, T, Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem, Cell, 1998, vol. 95, no. 6, pp. 805–815.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, M.R., Shah, S., Zhang, J., Rohrs, H., and Rao, A.G, Evidence for intermolecular interactions between the intracellular domains of the Arabidopsis receptor-like kinase ACR4, its homologs and the WOX5 transcription factor, PLoS ONE, 2015, vol. 10, no. 3. doi 10.1371/journal.pone.0118861

  • Michaels, S.D. and Amasino, R.M, Memories of winter: Vernalization and the competence to flower, Plant, Cell Environ., 2000, vol. 23, no. 11, pp. 1145–1153.

    Article  Google Scholar 

  • Mikkelsen, M.D., Naur, P., and Halkier, B.A, Arabidopsis mutants in the C-S lyase of glucosinolate biosynthesis establish a critical role for indole-3-acetaldoxime in auxin homeostasis, Plant J., 2004, vol. 37, no. 5, pp. 770–777.

    Article  CAS  PubMed  Google Scholar 

  • Muller, B. and Sheen, J, Cytokinin and auxin interaction in root stem-cell specification during early embryogenesis, Nature, 2008, vol. 453, no. 7198, pp. 1094–1097. doi 10.1038/nature06943

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller, C.J., Valdes, A.E., Wang, G., Ramachandran, P., Beste, L., Uddenberg, D., and Carlsbecker, A., PHABULOSA mediates an auxin signaling loop to regulate vascular patterning in Arabidopsis, Plant Physiol., 2016, vol. 170, no. 2, pp. 956–970. doi 10.1104/pp.15.01204

    Article  PubMed  Google Scholar 

  • Napsucialy-Mendivil, S., Alvarez-Venegas, R., Shishkova, S., and Dubrovsky, J.G, Arabidopsis homolog of trithorax1 (ATX1) is required for cell production, patterning, and morphogenesis in root development, J. Exp. Bot., 2014. doi 10.1093/jxb/eru355

    Google Scholar 

  • Nardmann, J. and Werr, W, The invention of WUS-like stem cell-promoting functions in plants predates leptosporangiate ferns, Plant Mol. Biol., 2012, vol. 78, nos. 1–2, pp. 123–134. doi 10.1007/s11103-011-9851-4

    Article  CAS  PubMed  Google Scholar 

  • Nardmann, J., Reisewitz, P., and Werr, W, Discrete shoot and root stem cellpromoting WUS/WOX5 functions are an evolutionary innovation of angiosperms, Mol. Biol. Evol., 2009, vol. 26, no. 8, pp. 1745–1755. doi 10.1093/molbev/msp084

    Article  CAS  PubMed  Google Scholar 

  • Nardmann, J., Zimmermann, R., Durantini, D., Kranz, E., and Werr, W., WOX gene phylogeny in Poaceae: A comparative approach addressing leaf and embryo development, Mol. Biol. Evol., 2007, vol. 24, no. 11, pp. 2474–2484.

    Article  CAS  PubMed  Google Scholar 

  • Ng, M. and Yanofsky, M.F, Function and evolution of the plant MADS-box gene family, Nat. Rev. Genet., 2001, vol. 2, no. 3, pp. 186–195.

    Article  CAS  PubMed  Google Scholar 

  • Nonhebel, H., Yuan, Y., Al-Amier, H., Pieck, M., Akor, E., Ahamed, A., Cohen, J.D., Celenza, J.L., and Normanly, J, Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene, Phytochemistry, 2011, vol. 72, no. 1, pp. 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, J.L, Rouzé, P., Verhelst, B., Lin, Y.C., Bayer, T., Collen, J., Dattolo, E., De Paoli, E., Dittami, S., Maumus, F., Michel, G., Kersting, A., Lauritano, C., Lohaus, R., Topel, M., et al., The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea, Nature, 2016, vol. 18, no. 530 (7590), pp. 331–335. doi 10.1038/nature16548

    Article  Google Scholar 

  • Osipova, M.A., Mortier, V., Demchenko, K.N., Tsyganov, V.E., Tikhonovich, I.A., Lutova, L.A., Dolgikh, E.A., and Goormachtig, S, Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation, Plant Physiol., 2012, vol. 158, no. 3, pp. 1329–1341. doi 10.1104/pp.111.188078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pi, L., Aichinger, E., van der Graaff, E., Llavata-Peris, C.I., Weijers, D., Hennig, L., and Groot, E, Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression, Dev. Cell, 2015, vol. 33, no. 5, pp. 576–588. doi 10.1016/j.devcel. 2015.04.024

    Article  CAS  PubMed  Google Scholar 

  • Poplavskaya, G.I., Vodnye rasteniya (Aquatic Plants), Moscow: Sov. entsikl,1971, vol. 5.

    Google Scholar 

  • Qiu, Y.L., Dombrovska, O., Lee, J., Li, L., Whitlock, B.A., Bernasconi-Quadroni, F., Rest, J.S., Davis, C.C., Borsch, T., Hilu, K.W., and Renner, S.S, Phylogenetic analyses of basal angiosperms based on nine plastid, mitochondrial, and nuclear genes, Int. J. Plant Sci., 2005, vol. 166, no. 5, pp. 815–842.

    Article  CAS  Google Scholar 

  • Quittenden, L.J., Davies, N.W., Smith, J.A., Molesworth, P.P., Tivendale, N.D., and Ross, J.J, Auxin biosynthesis in pea: Characterization of the tryptamine pathway, Plant Physiol., 2009, vol. 151, no. 3, pp. 1130–1138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubio, V., Linhares, F., Solano, R., Martin, A.C., Iglesias, J., Leyva, A., and Paz-Ares, J, A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae, Genes Dev., 2001, vol. 15, no. 16, pp. 2122–2133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini, S., Beis, D., Wolkenfelt, H., Murfett, J., Guilfoyle, T., Malamy, J., Benfey, P., Leyser, O., Bechtold, N., Weisbeek, P., and Scheres, B, An auxin-dependent distal organizer of pattern and polarity in the Arabidopsis root, Cell, 1999, vol. 99, no. 5, pp. 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Sablowski, R, Plant stem cell niches: From signalling to execution, Curr. Opin. Plant. Biol., 2011, vol. 14, no. 1, pp. 4–9. doi 10.1016/j.pbi.2010.08.001

    Article  CAS  PubMed  Google Scholar 

  • Sang, Y., Silva-Ortega, C.O., Wu, S., Yamaguchi, N., Wu, M.F., Pfluger, J., Gillmor, C.S., Gallagher, K.L., and Wagner, D, Mutations in two noncanonical Arabidopsis SWI2/SNF2 chromatin remodeling ATPases cause embryogenesis and stem cell maintenance defects, Plant J., 2012, vol. 72, no. 6, pp. 1000–1014.

    Article  CAS  PubMed Central  Google Scholar 

  • Sarkar, A.K., Luijten, M., Miyashima, S., Lenhard, M., Hashimoto, T., Nakajima, K., Scheres, B., Heidstra, R., and Laux, T, Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers, Nature, 2007, vol. 446, pp. 811–814. doi 10.1038/nature05703

    Article  CAS  Google Scholar 

  • Sauer, M., Robert, S., and Kleine-Vehn, J, Auxin: Simply complicated, J. Exp. Bot., 2013, vol. 64, no. 9, pp. 2565–2577.

    Article  CAS  Google Scholar 

  • Scheres, B., Stem-cell niches: Nursery rhymes across kingdoms, Nat. Rev. Mol. Cell Biol., 2007, vol. 8, pp. 345–354.

    Article  CAS  Google Scholar 

  • Scheres, B., Wolkenfelt, H., Willemsen, V., Terlouw, M., Lawson, E., Dean, C., and Weisbeek, P, Embryonic origin of the Arabidopsis primary root and root meristem initials, Development, 1994, vol. 120, pp. 2475–2478.

    CAS  Google Scholar 

  • Sharma, S.K., Yamamoto, M., and Mukai, Y, Immunocytogenetic manifestation of epigenetic chromatin modification marks in plants, Planta, 2015, vol. 241, pp. 291–301.

    Article  CAS  Google Scholar 

  • Skirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., Zanor, M.I., Gershenzon, J., Strnad, M., Szopa, J., Mueller-Roeber, B., and Witt, I., DOF transcription factor AtDOF1. 1 (OBP2) is part of a regulatory network controlling glucosinolate biosynthesis in Arabidopsis, Plant J., 2006, vol. 47, no. 1, pp. 10–24.

    Article  CAS  Google Scholar 

  • Smith, Z.R. and Long, J.A, Control of Arabidopsis apical–basal embryo polarity by antagonistic transcription factors, Nature, 2010, vol. 464, no. 7287, pp. 423–426.

    Article  CAS  PubMed Central  Google Scholar 

  • Song, S.K., Hofhuis, H., Lee, M.M., and Clark, S.E, Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis, Dev. Cell, 2008, vol. 15, no. 1, pp. 98–109.

    Article  CAS  PubMed Central  Google Scholar 

  • Soukup, A., Seago, J.L.Jr., and Votrubová, O, Developmental anatomy of the root cortex of the basal monocotyledon, Acorus calamus (Acorales, Acoraceae), Ann. Bot., 2005, vol. 96, no. 3, pp. 379–385.

    PubMed Central  Google Scholar 

  • Stahl, Y. and Simon, R., Is the Arabidopsis root niche protected by sequestration of the CLE40 signal by its putative receptor ACR4? Plant Signal Behav., 2009, vol. 4, no. 7, pp. 634–635.

  • Stahl, Y., Grabowski, S., Bleckmann, A., Kühnemuth, R., Weidtkamp-Peters, S., Pinto, K.G., Kirschner, G.K., Schmid, J.B., Wink, R.H., Hülsewede, A., Felekyan, S., Seidel, C.A., and Simon, R, Moderation of Arabidopsis root stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 receptor kinase complexes, Curr. Biol., 2013, vol. 23, no. 5, pp. 362–371.

    Article  CAS  Google Scholar 

  • Sugawara, S., Hishiyama, S., Jikumaru, Y., Hanada, A., Nishimura, T., Koshiba, T., Zhao, Y., Kamiya, Y., and Kasahara, H, Biochemical analyses of indole-3-acetaldoxime- dependent auxin biosynthesis in Arabidopsis, Proc. Natl Acad. Sci., 2009, vol. 106, no. 13, pp. 5430–5435.

    Article  CAS  PubMed Central  Google Scholar 

  • Sugimoto, K., Jiao, Y., and Meyerowitz, E.M, Arabidopsis regeneration from multiple tissues occurs via a root developmental pathway, Dev. Cell, 2010, vol. 18, pp. 463–471.

    Article  CAS  Google Scholar 

  • Tian, H., Jia, Y., Niu, T., Yu, Q., and Ding, Z, The key players of the primary root growth and development also function in lateral roots in Arabidopsis, Plant Cell Rep., 2014a, vol. 33, no. 5, pp. 745–753.

    Article  CAS  Google Scholar 

  • Tian, H., Wabnik, K., Niu, T., Li, H., Yu, Q., Pollmann, S., Vanneste, S., Govaerts, W, Rolcík, J., Geisler, M., Friml, J., and Ding, Z., WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis, Mol. Plant, 2014b, vol. 7, no. 2, pp. 277–289.

    Article  CAS  Google Scholar 

  • van den Berg, C., Willemsen, V., Hendriks, G., Weisbeek, P., and Scheres, B., Short-range control of cell differentiation in the Arabidopsis root meristem, Nature, 1997, vol. 390, no. 6657, pp. 287–289.

    Article  Google Scholar 

  • van der Graaff, E., Laux, T., and Rensing, S.A, The WUS homeobox-containing (WOX) protein family, Genome Biol., 2009, vol. 10, p. 248. doi 10.1186/gb-2009-10-12-248

    Article  PubMed Central  Google Scholar 

  • Vilarrasa-Blasi, J., González-García, M.P., Frigola, D., Fábregas, N., Alexiou, K.G., López-Bigas, N., Rivas, S., Jauneau, A., Lohmann, J.U., Benfey, P.N., Ibañes, M., and Caño-Delgado, A.I, Regulation of plant stem cell quiescence by a brassinosteroid signaling module, Dev. Cell, 2014, vol. 30, no. 1, pp. 36–47. doi 10.1016/j.devcel. 2014.05.020

    Article  CAS  Google Scholar 

  • Vinogradova, A.P., Lebedeva, M.A., and Lutova, L.A, Meristematic characteristics of tumors initiated by Agrobacterium tumefaciens in pea plants, Russ. J. Genet., 2015, vol. 51, no. 1, pp. 46–54.

    Article  CAS  Google Scholar 

  • Ward, J.M., Cufr, C.A., Denzel, M.A., and Neff, M.M, The Dof transcription factor OBP3 modulates phytochrome and cryptochrome signaling in Arabidopsis, Plant Cell, 2005, vol. 17, no. 2, pp. 475–485.

    Article  CAS  PubMed Central  Google Scholar 

  • Wenzel, C.L., Schuetz, M., Yu, Q., and Mattsson, J, Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana, Plant J., 2007, vol. 49, no. 3, pp. 387–398.

    Article  CAS  Google Scholar 

  • Willemsen, V., Bauch, M., Bennett, T., Campilho, A., Wolkenfelt, H., Xu, J., Haseloff, J., and Scheres, B, The NAC domain transcription factors FEZ and SOMBRERO control the orientation of cell division plane in Arabidopsis root stem cells, Dev. Cell, 2008, vol. 15, pp. 913–922.

    Article  CAS  Google Scholar 

  • Won, C., Shen, X., Mashiguchi, K., Zheng, Z., Dai, X., Cheng, Y., Kasahara, H., Kamiya, Y., Chory, J., and Zhao, Y, Conversion of tryptophan to indole-3-acetic acid by tryptophan aminotransferases of Arabidopsis and YUCCAs in Arabidopsis, Proc. Natl Acad. Sci., 2011, vol. 108, no. 45, pp. 18518–18523. doi 10.1073/pnas.1108436108

    Article  CAS  PubMed Central  Google Scholar 

  • Yadav, R.K., Perales, M., Gruel, J., Girke, T., Jönsson, H., and Reddy, G.V., WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex, Genes Dev., 2011, vol. 25, no. 19, pp. 2025–2030. doi 10.1101/gad.17258511

  • Yadav, R.K., Tavakkoli, M., and Reddy, G.V., WUSCHEL mediates stem cell homeostasis by regulating stem cell number and patterns of cell division and differentiation of stem cell progenitors, Development, 2010, vol. 137, no. 21, pp. 3581–3589. doi 10.1242/dev.054973

    Article  CAS  Google Scholar 

  • Yu, C., Liu, Y., Zhang, A., Su, S., Yan, A., Huang, L., Ali, I., Liu, Y., Forde, B.G., and Gan, Y., MADS-box transcription factor OsMADS25 regulates root development through affection of nitrate accumulation in rice, PLoS ONE, 2015, vol. 10, no. 8. doi 10.1371/journal.pone.0135196

  • Zhang, W., Swarup, R., Bennett, M., Schaller, G.E., and Kieber, J.J, Cytokinin induces cell division in the quiescent center of the Arabidopsis root apical meristem, Curr. Biol., 2013, vol. 23, no. 20, pp. 1979–1989.

    Article  CAS  Google Scholar 

  • Zhang, Y., Jiao, Y., Liu, Z., and Zhu, Y.X., ROW1 maintains quiescent centre identity by confining WOX5 expression to specific cells, Nat. Commun., 2015. doi 10.1038/ncomms7003

    Google Scholar 

  • Zhao, S., Jiang, Q.T., Ma, J., Zhang, X.W., Zhao, Q.Z., Wang, X.Y., Wang, C.S., Cao, X., Lu, Z.X., Zheng, Y.L., and Wei, Y.M, Characterization and expression analysis of WOX5 genes from wheat and its relatives, Gene, 2014, vol. 537, no. 1, pp. 63–69. doi 10.1016/j.gene.2013.12.022

    Article  CAS  Google Scholar 

  • Zhao, Y., Hull, A.K., Gupta, N.R., Goss, K.A., Alonso, J., Ecker, J.R., Normanly, J., Chory, J., and Celenza, J.L., Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3, Gene Dev., 2002, vol. 16, pp. 3100–3112.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Oshchepkova.

Additional information

Original Russian Text © E.A. Oshchepkova, N.A. Omelyanchuk, M.S. Savina, T. Pasternak, N.A. Kolchanov, E.V. Zemlyanskaya, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 4, pp. 459–474.

Supplementary materials are available for this article at 10.1134/S2079059717040086 and are accessible for authorized users.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oshchepkova, E.A., Omelyanchuk, N.A., Savina, M.S. et al. Systems biology analysis of the WOX5 gene and its functions in the root stem cell niche. Russ J Genet Appl Res 7, 404–420 (2017). https://doi.org/10.1134/S2079059717040086

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717040086

Keywords

Navigation