Skip to main content
Log in

The role of Pnut and its functional domains in Drosophila spermatogenesis

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The Drosophila Pnut protein belongs to the family of septins, which are conserved GTPases participating in cytokinesis and many more other fundamental cellular processes. Because of their filamentous appearance, membrane association, and functions, septins are considered as the fourth component of the cytoskeleton, along with actin, microtubules, and intermediate filaments. However, septins are much less studied than the other cytoskeleton elements. We had previously demonstrated that the deletion of the pnut gene leads to mitotic abnormalities in somatic cells. The goal of this work was to study the role of the pnut in Drosophila spermatogenesis. We designed a construct for pnut RNA interference allowing pnut expression to be suppressed ectopically. We analyzed the effect of pnut RNA interference on Drosophila spermatogenesis. Germline cells at the earliest stages of spermatogenesis were the most sensitive to Pnut depletion: the suppression of the pnut expression at these stages leads to male sterility as a result of immotile sperm. The testes of these sterile males did not show any significant meiotic defects; the axonemes and mitochondria were normal. We also analyzed the effect of mutations in the Pnut’s conservative domains on Drosophila spermatogenesis. Mutations in the GTPase domain resulted in cyst elongation defects. Deletions of the C-terminal domain led to abnormal testis morphology. Both the GTPase domain and C-terminal domain mutant males were sterile and produced immotile sperm. To summarize, we showed that Pnut participates in spermiogenesis, that is, the late stages of spermatogenesis, when major morphological changes in spermatocytes occur.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmetova, K.A. and Fedorova, S.A., The peanut gene mutations effects on somatic and germ line cell division in Drosophila melanogaster, Russ. J. Genet.: Appl. Res., 2012, vol. 2, no. 3, pp. 229–234.

    Article  Google Scholar 

  • Akhmetova, K., Balasov, M., Huijbregts, R.P.H., and Chesnokov, I., Functional insight into the role of Orc6 in septin complex filament formation in Drosophila, Mol. Biol. Cell, 2015, vol. 26, no. 1, pp. 15–28. doi 10.1091/mbc.E14- 02-0734

    Article  PubMed  PubMed Central  Google Scholar 

  • Akhmetova, K.A., Dorogova, N.V., Chesnokov, I.N., and Fedorova, S.A., Analysis of peanut gene RNAi in drosophila oogenesis, Russ. J. Genet., 2015, vol. 51, no. 9, pp. 847–854.

    Article  CAS  Google Scholar 

  • Cao, L., Ding, X., Yu, W., Yang, X., Shen, S., and Yu, L., Phylogenetic and evolutionary analysis of the septin protein family in metazoan, FEBS Lett., 2007, vol. 581, pp. 5526–5532. doi 10.1016/j.febslet.2007.10.032

    Article  CAS  PubMed  Google Scholar 

  • Casamayor, A. and Snyder, M., Molecular dissection of a yeast septin: Distinct domains are required for septin interaction, localization, and function, Mol. Cell. Biol., 2003, vol. 23, no. 8, pp. 2762–2777. doi 10.1128/MCB.23.8.2762-2777.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabian, L., Wei, H.C., Rollins, J., Noguchi, T., Blankenship, J.T., Bellamkonda, K., Polevoy, G., Gervais, L., Guichet, A., Fuller, M.T., and Brill, J.A., Phosphatidylinositol 4,5-bisphosphate directs spermatid cell polarity and exocyst localization in Drosophila, Mol. Biol. Cell, 2010, vol. 21, no. 9, pp. 1546–1555. doi 10.1091/mbc.E09-07-0582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huijbregts, R.P., Svitin, A., Stinnett, M.W., Renfrow, M.B., and Chesnokov, I., Drosophila Orc6 facilitates GTPase activity and filament formation of the septin complex, Mol. Biol. Cell, 2009, vol. 20, pp. 270–281. doi 10.1091/mbc.E08-07-0754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kissel, H., Georgescu, M.M., Larisch, S., Manova, K., Hunnicutt, G.R., and Steller, H., The Sept4 septin locus is required for sperm terminal differentiation in mice, Dev. Cell, 2005, vol. 8, pp. 353–364. doi 10.1016/j.devcel. 2005.01.021

    Article  CAS  PubMed  Google Scholar 

  • Lhuillier, P., Rode, B., Escalier, D., Lorès, P., Dirami, T., Bienvenu, T., Gacon, G., Dulioust, E., and Touré, A., Absence of annulus in human asthenozoospermia: Case report, Hum. Reprod., 2009, vol. 24, no. 6, pp. 1296–1303. doi 10.1093/humrep/dep020

    Article  CAS  PubMed  Google Scholar 

  • McMurray, M.A., Bertin, A., Garcia, G., Lam, L., Nogales, E., and Thorner, J., Septin filament formation is essential in budding yeast, Dev. Cell, 2011, vol. 20, no. 4, pp. 540–549. doi 10.1016/j.devcel.2011.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostowy, S. and Cossart, P., Septins: The fourth component of the cytoskeleton, Nat. Rev. Mol. Cell Biol., 2012, vol. 13, no. 3, pp. 183–194. doi doi 10.1038/nrm3284

    CAS  PubMed  Google Scholar 

  • Neufeld, T.P. and Rubin, G.M., The Drosophila peanut gene is required for cytokinesis and encodes a protein similar to yeast putative bud neck filament proteins, Cell, 1994, vol. 77, pp. 371–379. doi 10.1016/0092-8674(94)90152-X

    Article  CAS  PubMed  Google Scholar 

  • Pertceva, J.A., Dorogova, N.V., Bolobolova, E.U., Nerusheva, O.O., Fedorova, S.A., and Omelyanchuk, L.V., The role of Drosophila hyperplastic discs gene in spermatogenesis, Cell Biol. Int., 2010, vol. 10, pp. 991–996. doi 10.1042/CBI20100105

    Article  Google Scholar 

  • Saarikangas, J. and Barral, Y., The emerging functions of septins in metazoans, EMBO Rep., 2011, vol. 12, no. 11, pp. 1118–1126. doi 10.1038/embor.2011.193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirajuddin, M., Farkasovsky, M., Hauer, F., Kühlmann, D., Macara, I.G., Weyand, M., Stark, H., and Wittinghofer, A., Structural insight into filament formation by mammalian septins, Nature, 2007, vol. 449, pp. 311–315. doi 10.1038/nature06052

    Article  CAS  PubMed  Google Scholar 

  • Sirajuddin, M., Farkasovsky, M., Zent, E., and Wittinghofer, A., GTP-induced conformational changes in septins and implications for function, Proc. Natl. Acad. Sci. U.S.A., 2009, vol. 106, no. 39, pp. 16592–16597. doi 10.1073/pnas.0902858106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka-Takiguchi, Y., Kinoshita, M., and Takiguchi, K., Septin-mediated uniform bracing of phospholipid membranes, Curr. Biol., 2009, vol. 19, no. 2, pp. 140–145. doi 10.1016/j.cub.2008.12.030

    Article  CAS  PubMed  Google Scholar 

  • Zent, E. and Wittinghofer, A., Human septin isoforms and the GDP-GTP cycle, Biol. Chem., 2014, vol. 395, pp. 169–180. doi 10.1515/hsz-2013-0268

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Fedorova.

Additional information

Original Russian Text © K.A. Akhmetova, N.V. Dorogova, E.U. Bolobolova, I.N. Chesnokov, S.A. Fedorova, 2016, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2016, Vol. 20, No. 1, pp. 65–71.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmetova, K.A., Dorogova, N.V., Bolobolova, E.U. et al. The role of Pnut and its functional domains in Drosophila spermatogenesis. Russ J Genet Appl Res 7, 29–35 (2017). https://doi.org/10.1134/S2079059717010026

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059717010026

Keywords

Navigation