Skip to main content
Log in

Computer simulation of the spatial structures of MUC1 peptides capable of inhibiting apoptosis

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

The identification of new effective apoptosis inhibitors plays an important role in the development of drugs for the treatment of various disorders, including neurogenerative diseases. Apoptosis is initiated via the formation of macromolecular protein complexes. These complexes exert the activation of caspases, which are key regulators and executors of apoptosis. The death inducing signaling complex, (DISC) plays a central role in the induction of the extrinsic apoptosis pathway. The adaptor protein FADD is the core component of the DISC that is essential for caspase activation at the DISC and subsequent apoptosis initiation. Therefore, inhibitors of FADD may serve as candidate drugs inhibiting apoptosis. Furthermore, the study of the mechanisms of action of these inhibitors is of great interest for understanding the signal transduction pathways of apoptosis. It has been reported that the mucin type 1 glycoprotein (MUC1) is a natural protein inhibitor of FADD. In particular, two fragments of the primary structure of the cytoplasmic domain of MUC1 (MUC1-CD) are capable of inhibiting the binding of procaspase 8 to FADD. However, the 3D structure of MUC1 has not been obtained yet. This significantly complicates the rational design of potential drugs based on the peptides derived from the MUC1 structure. The aim of the present study was in silico prediction of the 3D structures of MUC1-CD peptides corresponding to protein fragments 120 and 4672, as well as the analysis of their conformational properties. The special attention was placed on the MUC1-CD (46-72) peptide, which is able to bind to FADD. By using the method of molecular dynamics in implicit water it was shown that the structure of the peptide MUC1-CD (46-72) is similar to the three-dimensional structures of at least four fragments of caspase 8. These results indicate that the molecular mechanism of the inhibitory action of the peptide can be explained by the competitive binding of MUC1 to FADD due to the structural and conformational similarity to fragments of the caspase 8 DEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agata, N., Ahmad, R., Kawano, T., Raina, D., Kharbanda, S., and Kufe, D., MUC1 oncoprotein blocks death receptormediated apoptosis by inhibiting recruitment of caspase-8, Cancer Res., 2008, vol. 68, no. 15, pp. 6136–6144. doi 10.1158/ 0008-5472.CAN-08-0464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrington, P.E., Sandu, C., Wei, Y., Hill, J.M., Morisawa, G., Huang, T., Gavathiotis, E., Wei, Y., and Werner, M.H., The structure of FADD and its mode of interaction with procaspase-8, Mol. Cell, 2006, vol. 22, no. 5, pp. 599–610. doi 10.1016/j.molcel.2006.04.018

    Article  CAS  PubMed  Google Scholar 

  • Case, D.A., Berryman, J.T., Betz, R.M., Cerutti, D.S., Cheatham, T.E., Darden, T.A., Duke, R.E., Giese, T.J., Gohlke, H., Goetz, A.W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., et al., AMBER 2015, San Francisco: University of California, 2015.

    Google Scholar 

  • Dickens, L.S., Boyd, R.S., Jukes-Jones, R., Hughes, M.A., Robinson, G.L., Fairall, L., Schwabe, J.W.R., and Cain, K., and Macfarlane, M., A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death, Mol. Cell, 2012, vol. 47, no. 2, pp. 291–305. doi 10.1016/j.molcel.2012.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbert, A. and Sternberg, M.J.E., MaxCluster—A Tool for Protein Structure Comparison and Clustering, 2014. http://www.sbg.bio.ic.ac.uk/~maxcluster/.

    Google Scholar 

  • Huang, L., Chen, D., Liu, D., Yin, L., Kharbanda, S., and Kufe, D., MUC1 oncoprotein blocks glycogen synthase kinase 3ß-mediated phosphorylation and degradation of ß-catenin, Cancer Res., 2005, vol. 65, no. 22, pp. 10413–10422. doi 10.1158/0008-5472.CAN-05-2474

    Article  CAS  PubMed  Google Scholar 

  • Kabsch, W. and Sander, C., Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 1983, vol. 22, no. 12, pp. 2577–2637.

    Article  CAS  PubMed  Google Scholar 

  • Kufe, D., Inghirami, G., Abe, M., Hayes, D., Justi-Wheeker, H., and Schlom, J., Differential reactivity of a novel monoclonal antibody (DF3) with human malignant versus benign breast tumors, Hybridoma, 1984, vol. 3, pp. 223–32. doi 10.1089/hyb.1984.3.223

    Article  CAS  PubMed  Google Scholar 

  • Levitin, F., Stern, O., Weiss, M., Gil-Henn, C., Ziv, R., Prokocimer, Z., Smorodinsky, N.I., Rubinstein, D.B., and Wreschner, D.H., The MUC1 SEA module is a self-cleaving domain, J. Biol. Chem., 2005, vol. 280, no. 39, pp. 33374–33386. doi 10.1074/jbc.M506047200

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Kuwahara, H., Ren, J., Wen, G., and Kufe, D., The c-Src tyrosine kinase regulates signaling of the human DF3/MUC1 carcinoma-aßsociated antigen with GSK3 and ß-catenin, J. Biol. Chem., 2001, vol. 276, no. 9, pp. 6061–6064. doi 10.1074/jbc.C000754200

    Article  CAS  PubMed  Google Scholar 

  • Ligtenberg, M.J., Kruijshaar, L., Buijs, F., Van Meijer, M., Litvinov, S.V., and Hilkens, J., Cell-associated episialin is a complex containing two proteins derived from a common precursor, J. Biol. Chem., 1992, vol. 267, no. 9, pp. 6171–6177.

    CAS  PubMed  Google Scholar 

  • Macao, B., Johansson, D.G., Hansson, G.C., and Härd, T., Autoproteolysis coupled to protein folding in the SEA domain of the membranebound MUC1 mucin, Nat. Struct. Mol. Biol., 2006, vol. 13, no. 1, pp. 71–76. doi 10.1038/nsmb1035

    Article  CAS  PubMed  Google Scholar 

  • Nguyen, H., Roe, D.R., and Simmerling, C., Improved generalized born solvent model parameters for protein simulations, J. Chem. Theory Comput., 2013, vol. 9, no. 4, pp. 2020–2034. doi 10.1021/ct3010485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, D., Ahmad, R., Kumar, S., Ren, J., Yoshida, K., Kharbanda, S., and Kufe, D., MUC1 oncoprotein blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage, EMBO J., 2006, vol. 25, no. 16, pp. 3774–3783. doi 10.1038/sj.emboj.7601263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raina, D., Agarwal, P., Lee, J., Bharti, A., McKnight, C.J., Sharma, P., Kharbanda, S., and Kufe, D., Characterization of the MUC1-C cytoplasmic domain as a cancer target, PLOS One, 2015, vol. 10, no. 8. doi 10.1371/journal.pone.0135156

    Google Scholar 

  • Ren, J., Li, Y., and Kufe, D., Protein kinase C d regulates function of the DF3/MUC1 carcinoma antigen in ß-catenin signaling, J. Biol. Chem., 2002, vol. 277, no. 20, pp. 17616–17622. doi 10.1074/jbc.M200436200

    Article  CAS  PubMed  Google Scholar 

  • Schleich, K., Warnken, U., Fricker, N., Özturk, S., Richter, P., Kammerer, K., Schnölzer, M., Karmmer, P.H., and Lavrik, I.N., Stoichiometry of the CD95 death-inducing signaling complex: Experimental and modeling evidence for a death effector domain chain model, Mol. Cell, 2012, vol. 47, no. 2, pp. 306–319. doi 10.1016/j.molcel.2012.05.006

    Article  CAS  PubMed  Google Scholar 

  • Shatsky, M., Nussinov, R., and Wolfson, H.J., A method for simultaneous alignment of multiple protein structures, Proteins-Structure Function Bioinf., 2004, vol. 56, no. 1, pp. 143–156. doi 10.1002/prot.10628

    Article  CAS  Google Scholar 

  • Shen, C., Yue, H., Pei, J., Guo, X., Wang, T., and Quan, J.M., Crystal structure of the death effector domains of caspase-8, Biochem. Bioph. Res. Co., 2015, vol. 463, no. 3, pp. 297–302. doi 10.1016/j.bbrc.2015.05.054

    Article  CAS  Google Scholar 

  • Wei, X., Xu, H., and Kufe, D., Human MUC1 oncoprotein regulates p53-responsive gene transcription in the genotoxic stress response, Cancer Cell, 2005, vol. 7, no. 2, pp. 167–178. doi 10.1016/j.ccr.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  • Yang, J.K., Wang, L., Zheng, L., Wan, F., Ahmed, M., Lenardo, M.J., and Wu, H., Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition, Mol. Cell, 2005, vol. 20, no. 6, pp. 939–949. doi 10.1016/j.ccr.2005.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagrovic, B. and Pande, V., Solvent viscosity dependence of the folding rate of a small protein: Distributed computing study, J. Comput. Chem., 2003, vol. 24, no. 12, pp. 1432–1436. doi 10.1002/jcc.10297

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Ivanisenko.

Additional information

Original Russian Text © N.V. Ivanisenko, I.N. Lavrik, V.A. Ivanisenko, 2015, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2015, Vol. 19, No. 6, pp. 731–737.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanisenko, N.V., Lavrik, I.N. & Ivanisenko, V.A. Computer simulation of the spatial structures of MUC1 peptides capable of inhibiting apoptosis. Russ J Genet Appl Res 6, 771–777 (2016). https://doi.org/10.1134/S2079059716070042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059716070042

Keywords

Navigation