Skip to main content
Log in

LIM-kinase 1 in regulation of cognitive and locomotor functions of Drosophila melanogaster

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

LIM-kinase 1 is a key enzyme of actin remodeling, which is necessary for synaptic plasticity during learning and memory formation. The deletion of the limk1 leads to the development of Williams’s syndrome accompanied by cognitive impairments and motor dysfunction, which is referred to as cytoskeleton diseases, cofilin pathologies. Cofilin pathologies are characterized by the formation of cofilin-actin complexes in neurons, which disrupt vesicular transport and identify early stages of dementia. In the present article, we briefly reviewed the data on the role of the LIMK1 functioning in communicative sound production during courtship behavior, learning acquisition, and memory formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ang, L.H., Chen, W., Yao, Y., et al., Lim kinase regulates the development of olfactory and neuromuscular synapses, Dev. Biol., 2006, vol. 293, no. 1, pp. 178–190.

    Article  CAS  PubMed  Google Scholar 

  • Angeli, S., Shao, J., and Diamond, M.I., F-actin binding regions on the androgen receptor and huntingtin increase aggregation and alter aggregate characteristics, PLoS One, 2010, vol. 5, no. 2, p. e9053.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey, C.H., Bartsch, D., and Kandel, E.R., Toward a molecular definition of long-term memory storage, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 24, pp. 13445–13452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamburg, J.R. and Bloom, G.S., Cytoskeletal pathologies of Alzheimer disease, Cell Motil. Cytoskeleton, 2009, vol. 66, no. 8, pp. 635–649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamburg, J.R. and Zheng, J.Q., ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity, Nat. Neurosci., 2010, vol. 13, no. 10, pp. 1208–1215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernstein, B.W. and Bamburg, J.R., Actin-ATP hydrolysis is a major energy drain for neurons, J. Neurosci., 2003, vol. 23, no. 1, pp. 1–6.

    CAS  PubMed  Google Scholar 

  • Bernstein, B.W., Chen, H., Boyle, J.A., and Bamburg, J.R., Formation of actin-ADF/cofilin rods transiently retards decline of mitochondrial potential and ATP in stressed neurons, Am. J. Physiol. Cell Physiol., 2006, vol. 291, no. 5, pp. 828–839.

    Article  Google Scholar 

  • Bernstein, B.W. and Bamburg, J.R., ADF/cofilin: a functional node in cell biology, Trends Cell Biol., 2010, vol. 20, pp. 187–195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birkenfeld, J., Betz, H., and Roth, D., Identification of cofilin and LIM-domain-containing protein kinase 1 as novel interaction partners of 14-3-3 zeta, Biochem. J., 2003, vol. 369(Pt 1), pp. 45–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boissonneault, V., Plante, I., Rivest, S., and Provost, P., Microrna-298 and microrna-328 regulate expression of mouse beta-amyloid precursor protein-converting enzyme 1, J. Biol. Chem., 2009, vol. 284, pp. 1971–1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlisle, H.J., Manzerra, P., Marcora, E., and Kennedy, M.B., SynGAP regulates steady-state and activity-dependent phosphorylation of cofilin, J. Neurosci., 2008, vol. 28, no. 50, pp. 13 673–13 683.

    Article  CAS  Google Scholar 

  • Chen, Q., Peto, C.A., Shelton, G.D., et al., Loss of modifier of cell adhesion reveals a pathway leading to axonal degeneration, J. Neurosci., 2009, vol. 29, no. 1, pp. 118–130.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cox, L.J., Hengst, U., and Gurskaya, N.G., Intraaxonal translation and retrograde trafficking of CREB promotes neuronal survival, Nature Cell Biol., 2008, vol. 10, no. 2, pp. 149–159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, R.C., Maloney, M.T., Minamide, L.S., et al., Mapping cofilin-actin rods in stressed hippocampal slices and the role of Cdc42 in amyloid-beta-induced rods, J. Alzheimer’s Dis., 2009, vol. 18, no. 1, pp. 35–50.

    CAS  Google Scholar 

  • Davis, R.C., Marsden, I.T., Maloney, M.T., et al., Amyloid beta dimers/trimers potently induce cofilin-actin rods that are inhibited by maintaining cofilin-phosphorylation, Mol. Neurodegener., 2011, vol. 6, pp. 1–16.

    Article  Google Scholar 

  • DiFiglia, M., Sapp, E., Chase, K., et al., Huntingtin is a cytoplasmic protein associated with vesicles in human and rat brain neurons, Neuron, 1995, vol. 14, pp. 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  • Edelmann, L., Spiteri, E., Koren, K., et al., AT-rich palindromes mediate the constitutional t (11;22) translocation, Am. J. Hum. Genet., 2001, vol. 68, no. 1, pp. 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards, D.C. and Gill, G.N., Structural features of LIM kinase that control effects on the actin cytoskeleton, J. Biol. Chem., 1999, vol. 274, no. 16, pp. 11352–11361.

    Article  CAS  PubMed  Google Scholar 

  • Foletta, V.C., Moussi, N., Sarmiere, P.D., et al., LIM kinase 1, a key regulator of actin dynamics, is widely expressed in embryonic and adult tissues, Exp. Cell Res., 2004, vol. 294, pp. 392–405.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, M.R. and Doherty, J., Glial cell biology in Drosophila and vertebrates, Trends Neurosci., 2006, vol. 29, no. 2, pp. 82–90.

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Medel, Y., Logan, M.A., Ashley, J., et al., Glia and muscle sculpt neuromuscular arbors by engulfing destabilized synaptic boutons and shed presynaptic debris, PLoS Biol., 2009, vol. 7, no. 8, p. e1000184.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulga, T.A., Elson-Schwab, I., Khurana, V., et al., Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo, Nat. Cell Biol., 2007, vol. 9, no. 2, pp. 139–149.

    Article  CAS  PubMed  Google Scholar 

  • Gao, J., Wang, W.Y., Mao, Y.W., et al., A novel pathway regulates memory and plasticity via SIRT1 and miR-134, Nature, 2010, vol. 466, no. 7310, pp. 1105–1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorovoy, M., Niu, J., Bernard, O., et al., Lim kinase 1 coordinates microtubule stability and actin polymerization in human endothelial cells, J. Biol. Chem., 2005, vol. 280, no. 28, pp. 26533–26542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gu, J., Lee, C.W., Fan, Y., et al., ADF/cofilin-mediated actin dynamics regulate AMPA receptor trafficking during synaptic plasticity, Nat. Neurosci., 2010, vol. 13, no. 10, pp. 1208–1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayworth, C.R., Moody, S.E., Chodosh, L.A., et al., Induction of neuregulin signaling in mouse Schwann cells in vivo mimics responses to denervation, J. Neurosci., 2006, vol. 26, no. 25, pp. 6873–6884.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, S.S., Horre, K., Nicolai, L., et al., Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer’s disease correlates with increased BACE1/betasecretase expression, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, pp. 6415–6420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heredia, L., Helguera, P., de Olmos, S., et al., Phosphorylation of actin-depolymerizing factor/cofilin by LIM-kinase mediates amyloid beta-induced degeneration: a potential mechanism of neuronal dystrophy in Alzheimer’s disease, J. Neurosci., 2006, vol. 26, pp. 6533–6542.

    Article  CAS  PubMed  Google Scholar 

  • Hess, D.M., Scott, M.O., Potluri, S., et al., Localization of TrkC to Schwann cells and effects of neurotrophin-3 signaling at neuromuscular synapses, J. Comp. Neurol., 2007, vol. 501, no. 4, pp. 465–482.

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka, J., Okano, I., Higuchi, O., et al., Self-association of LIM-kinase 1 mediated by the interaction between an N-terminal LIM domain and a C-terminal kinase domain, FEBS Lett., 1996, vol. 399, nos. 1–2, pp. 117–121.

    Article  CAS  PubMed  Google Scholar 

  • Jang, D.H., Han, J.H., Lee, S.H., et al., Cofilin expression induces cofilin-actin rod formation and disrupts synaptic structure and function in Aplysia synapses, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 44, pp. 16072–16077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, R., Zuccato, C., Belyaev, N.D., et al., A microRNA-based gene dysregulation, Neurobiol. Dis., 2008, vol. 29, no. 3, pp. 438–445.

    Article  CAS  PubMed  Google Scholar 

  • Kaminskaya, A.N., Nikitina, E.A., Payalina, T.L., et al., Effect of LIMK1 isoform ratio on the courtship behavior in Drosophila melanogaster: an integrated approach, Ekol. Genet., 2011, vol. 9, no. 9, pp. 3–14.

    Google Scholar 

  • Kaminskaya, A.N., Characteristics of Drosophila melanogaster behavior at different limk1 gene structure, Extended Abstract of Cand. Sci. (Biol.) Dissertation, St. Petersburg, 2012.

    Google Scholar 

  • Kamyshev, N.G., Iliadi, K.G., and Bragina, J.V., Drosophila conditioned courtship: two ways of testing memory, Learn. Mem., 1999, vol. 6, no. 1, pp. 1–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J., Inoue, K., Ishii, J., et al., A microRNA feedback circuit in midbrain dopamine neurons, Science, 2007, vol. 317, no. 5842, pp. 1220–1224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi, M., Nishita, M., Mishima, T., et al., MAP-KAPK-2-mediated LIM-kinase activation is critical for VEGF-induced actin remodeling and cell migration, EMBO J., 2006, vol. 25, no. 4, pp. 713–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konopka, W., Schutz, G., and Kaczmarek, L., The microRNA contribution to learning and memory, Neuroscientist, 2011, vol. 17, no. 5, pp. 468–474.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn, D.E., Nuovo, G.J., Martin, M.M., et al., Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts, Biochem. Biophys. Res. Commun., 2008, vol. 370, no. 3, pp. 473–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landles, C., Sathasivam, K., Weiss, A., et al., Proteolysis of mutant huntingtin produces an exon 1 fragment that accumulates as an aggregated protein in neuronal nuclei in Huntington disease, J. Biol. Chem., 2010, vol. 285, pp. 8808–8823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee-Hoeflich, S.T., Causing, C.G., and Podkowa, M., Activation LIMK1 by binding to the BMP receptor, BMPII, regulates BMP-dependent dendritogenesis, EMBO J., 2004, vol. 23, pp. 4792–4801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, R., Soosairajah, J., Harari, D., et al., Hsp90 increases LIM kinase activity by promoting its homo-dimerization, FASEB J., 2006, vol. 20, pp. 417–425.

    Google Scholar 

  • Lim, M.K., Kawamura, T., Ohsawa, Y., et al., Parkin interacts with LIM kinase 1 and reduces its cofilinphosphorylation activity via ubiquitination, Exp. Cell Res., 2007, vol. 313, pp. 2858–2874.

    Article  CAS  PubMed  Google Scholar 

  • Lindstrom, N., Neves, C., McIntosh, R., et al., Tissue specific characterisation of LIM-kinase 1 expression during mouse embryogenesis, Gene Expr. Patterns, 2010, vol. 11, nos. 3–4, pp. 221–232.

    PubMed  PubMed Central  Google Scholar 

  • Liu, Z., Sall, A., and Yang, D., MicroRNA: an emerging therapeutic target and intervention tool, Int. J. Mol. Sci., 2008, vol. 9, no. 6, pp. 978–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lobashev, M.E., On parallel (similar and homologous) developmental series of the basic properties of higher nervous activity in animal phylogeny, in Materialy 2-go nauchnogo soveshchaniya, posvyashchennogo pamyati L.A. Orbeli (Proc. 2nd Sci. Meeting Dedicated to the Memory of L.A. Orbeli), Moscow: Leningrad, 1960, pp. 16–23.

    Google Scholar 

  • Lopatina, N.G., Zachepilo, T.G., Chesnokova, E.G., and Savvateeva-Popova, E.V., Behavioral and molecular consequences of deficiency of endogenous kynurenines in the honey bee (Apis mellifera L.), Zh. Vyssh. Nerv. Deyat. im. I.P. Pavlova, 2010, vol. 60, no. 2, pp. 229–235.

    CAS  Google Scholar 

  • Maciver, S.K. and Harrington, C.R., Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies, Neuroreport, 1995, vol. 6, no. 15, pp. 1985–1993.

    CAS  Google Scholar 

  • Maloney, M.T. and Bamburg, J.R., Cofilin-mediated neurodegeneration in Alzheimer’s disease and other amyloidopathies, Mol. Neurobiol., 2007, vol. 35, no. 1, pp. 21–44.

    Article  CAS  PubMed  Google Scholar 

  • Manetti, F., Lim kinases are attractive targets with many macromolecular partners and only a few small molecule regulators, Med. Res. Rev., 2011, p. 1–31. doi 10.1002/med.20230

    Google Scholar 

  • Maselli, A., Furukawa, R., Thomson, S.A.M., et al., Formation of Hirano bodies induced by expression of an actin cross-linking protein with a gain-of-function mutation, Eukariotic Cell, 2003, vol. 2, no. 4, pp. 778–787.

    Article  CAS  Google Scholar 

  • Masliah, E., The role of synaptic proteins in Alzheimer’s disease, Ann. N. Y. Acad. Sci., 2000, vol. 924, pp. 68–75.

    Article  CAS  PubMed  Google Scholar 

  • McBride, S.M.J., Giuliani, G., Choi, C., et al., Mushroom body ablation impairs short-term memory and longterm memory of courtship conditioning in Drosophila melanogaster, Neuron, 1999, vol. 24, no. 4, pp. 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Medvedeva, A.V., Molotkov, D.A., Nikitina, E.A., et al., Systemic regulation of genetic and cytogenetic processes by a signal cascade of actin remodeling: locus agnostic in Drosophila, Russ. J. Genet., 2008, vol. 44, no. 6, pp. 669–681.

    Article  CAS  Google Scholar 

  • Meng, Y., Zhang, Y., Tregoubov, V., et al., Abnormal spine morphology and enhanced LTP in LIMK-1 knockout mice, Neuron, 2002, vol. 35, pp. 121–133.

    Article  CAS  PubMed  Google Scholar 

  • Minamide, L.S., Striegl, A.M., Boyle, J.A., et al., Neurodegenerative stimuli induce persistent ADF/cofilinactin rods that disrupt distal neurite function, Nat. Cell Biol., 2000, vol. 2, pp. 628–636.

    Article  CAS  PubMed  Google Scholar 

  • Minamide, L.S., Maiti, S., Boyle, J.A., et al., Isolation and characterization of cytoplasmic cofilin-actin rods, J. Biol. Chem., 2010, vol. 285, pp. 5450–5460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moloney, A., Sattelle, D.B., Lomas, D.A., and Crowther, D.C., Alzheimer’s disease: insights from Drosophila melanogaster models, Trends Biochem. Sci., 2010, vol. 35, no. 4, pp. 228–235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munsie, L., Caron, N., Atwal, R.S., et al., Mutant huntingtin causes defective actin remodeling during stress: defining a new role for transglutaminase 2 in neurodegenerative disease, Hum. Mol. Genet., 2011, vol. 20, no. 10, pp. 1937–1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nadella, K.S., Saji, M., Jacob, N.K., et al., Regulation of actin function by protein kinase A-mediated phosphorylation of LIMK1, EMBO Rep., 2009, vol. 10, no. 6, pp. 599–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagata, K., Ohashi, K., Yang, N., and Mizuno, K., The N-terminal LIM domain negatively regulates the kinase activity of LIM-kinase 1, Biochem. J., 1999, vol. 343 P.

  • Packer, A.N., Xing, Y., Harper, S.Q., Jones, L., Davidson, B.L., et al., The bifunctional microRNA miR-9/miR-9* regulates REST and CoREST and is downregulated in Huntington’s disease, J. Neurosci., 2008, vol. 28, no. 53, pp. 14341–14346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perkins, D.O., Jeffries, C.D., Jarskog, L.F., et al., microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder, Genome Biol., 2007, vol. 8, no. 2), p. R27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Popov, A.V., Savvateeva-Popova, E.V., and Kamyshev, N.G., Characteristics of acoustic communication in fruit flies Drosophila melanogaster, Sens. Sist., 2000, vol. 14, pp. 60–74.

    Google Scholar 

  • Popov, A.V., Kaminskaya, A.N., and Savvateeva-Popova, E.V., Courtship behavior, acoustic communication, and stress resistance in Drosophila melanogaster mutants for the agnostic gene, encoding LIMK1, Zh. Evol. Biokhim. Fiziol., 2009, vol. 45, no. 2, pp. 184–190.

    CAS  PubMed  Google Scholar 

  • Reddy, L.V., Koirala, S., Sugiura, Y., et al., Glial cells maintain synaptic structure and function and promote development of the neuromuscular junction in vivo, Neuron, 2003, vol. 40, no. 3, pp. 563–580.

    Article  CAS  PubMed  Google Scholar 

  • Rivlin, P.K., St, Clair R.M., Vilinsky, I., and Deitcher, D.L., Morphology and molecular organization of the adult neuromuscular junction of Drosophila, J. Comp. Neurol., 2004, vol. 468, no. 4, pp. 596–613.

    Article  CAS  PubMed  Google Scholar 

  • Rosso, S., Bollati, F., Bisbal, M., et al., Limk1 regulates Goldgi dynamics, traffic of Golgi-derived vesicles, and process extension in primary cultured neurons, Mol. Biol. Cell, 2004, vol. 15, pp. 3433–3449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savvateeva-Popova, E.V., Peresleni, A.I., Sharagina, L.M., et al., Architecture of the X chromosome, expression of LIM kinase 1, and recombination in the agnostic mutants of Drosophila: a model for human Williams syndrome, Russ. J. Genet., 2004, vol. 40, no. 6, pp. 605–623.

    Article  CAS  Google Scholar 

  • Schmid, A. and Sigrist, S.J., Analysis of neuromuscular junctions: histology and in vivo imaging, Methods Mol. Biol., 2008, vol. 420, pp. 239–251.

    Article  CAS  PubMed  Google Scholar 

  • Schratt, G.M., Tuebing, F., Nigh, E.A., et al., A brain-specific microRNA regulates dendritic spine development, Nature, 2006, vol. 439, no. 7074, pp. 283–289.

    Article  CAS  PubMed  Google Scholar 

  • Scott, R.W. and Olson, M.F., LIM kinase: function, regulation and association with human disease, J. Mol. Med., 2007, vol. 85, pp. 555–568.

    Article  CAS  PubMed  Google Scholar 

  • Siegel, R.W. and Hall, J.C., Conditioned responses in courtship behavior of normal and mutant Drosophila, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, no. 1, pp. 3430–3434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soosairajah, J., Maiti, S., Waggan, O., et al., Interplay between components of a novel LIM kinase slingshot phosphotase complex regulates cofilin, EMBO, 2005, vol. 24, pp. 473–486.

    Article  CAS  Google Scholar 

  • Stokin, G.B. and Goldstein, L.S., Axonal transport and Alzheimer’s disease, Annu. Rev. Biochem., 2006, vol. 75, pp. 607–627.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi, H., Funakoshi, H., and Nakamura, T., LIM-kinase as a regulator of actin dynamics in spermatogenesis, Cytogenet. Genome Res., 2003, vol. 103, nos. 3–4, pp. 290–298.

    Article  CAS  PubMed  Google Scholar 

  • Tauber, E. and Eberl, D.F., Song production in auditory mutants of Drosophila: the role of sensory feedback, J. Comp. Physiol. A, 2001, vol. 187, no. 5, pp. 341–348.

    Article  CAS  PubMed  Google Scholar 

  • Tomiyoshi, G., Horita, Y., Nishita, M., et al., Caspasemediated cleavage and activation of LIM-kinase 1 and its role in apoptotic membrane blebbing, Genes Cells, 2004, vol. 9, no. 6, pp. 591–600.

    Article  CAS  PubMed  Google Scholar 

  • Torroja, L., Packard, M., Gorczyca, M., et al., The Drosophila beta-amyloid precursor protein homolog promotes synapse differentiation at the neuromuscular junction, J. Neurosci., 1999, vol. 19, no. 18, pp. 7793–7803.

    CAS  PubMed  Google Scholar 

  • Tully, T., Preat, T., Boynton, S.C., and Del Vecchio, M., Genetic dissection of consolidated memory in Drosophila, Cell, 1994, vol. 79, no. 1, pp. 35–47.

    Article  CAS  PubMed  Google Scholar 

  • Tully, T., Discovery of genes involved with learning and memory: an experimental synthesis of Hirschian and Benzerian perspectives, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, no. 24, pp. 13460–13467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J.Y., Frenzel, K.E., Wen, D., and Falls, D.L., Transmembrane neuregulins interact with LIM kinase 1, a cytoplasmic protein kinase implicated in development of visuospatial cognition, J. Biol. Chem., 1998, vol. 273, pp. 20525–20534.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Hu, Y., and Tsien, J.Z., Molecular and systems mechanisms of memory consolidation and storage, Prog. Neurobiol., 2006, vol. 79, no. 3, pp. 123–135.

    Article  CAS  PubMed  Google Scholar 

  • Yang, N., Higuchi, O., Ohashi, K., et al., Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization, Nature, 1998, vol. 393, no. 6687, pp. 809–812.

    Article  CAS  PubMed  Google Scholar 

  • Yang, E.J., Yoon, J.H., Mindo, S., and Chung, K.C., LIM kinase 1 activates cAMP-responsive element-binding protein during the neuronal differentiation of immortalized hippocampal progenitor cells, J. Biol. Chem., 2004, vol. 279, pp. 8903–8910.

    Article  CAS  PubMed  Google Scholar 

  • Yao, J., Hennessey, T., Flynt, A., et al., MicroRNA-related cofilin abnormality in Alzheimer’s disease, PLoS ONE, 2010, vol. 5, no. 12, pp. 15 546–15 554.

    Article  Google Scholar 

  • Yokoo, T., Toyoshima, H., Miura, M., et al., P57kip2 regulate actin dynamics by binding and translocating Limkinase 1 to the nucleus, J. Biol. Chem., 2003, vol. 278, pp. 52919–52923.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kaminskaya.

Additional information

Original Russian Text © A.N. Kaminskaya, A.V. Medvedeva, 2013, published in Ekologicheskaya Genetika, 2013, Vol. 11, No. 3, pp. 63–78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaminskaya, A.N., Medvedeva, A.V. LIM-kinase 1 in regulation of cognitive and locomotor functions of Drosophila melanogaster . Russ J Genet Appl Res 4, 466–477 (2014). https://doi.org/10.1134/S2079059714050050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059714050050

Keywords

Navigation