Skip to main content
Log in

Overexpression of genes encoding asparagine-glutamine-rich transcriptional factors causes nonsense suppression in Saccharomyces cerevisiae

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

We previously conducted a search for genes whose overexpression causes nonsense suppression in Saccharomyces cerevisiae with a background of modified expression of Sup35 variants. In this study, we analyzed the influence of genes encoding asparagine-glutamine-rich transcriptional factors on this process. We demonstrated that the overexpression of ABF1, GLN3, FKH2, MCM1, MOT3, and REB1 affects nonsense suppression in S. cerevisiae. The data obtained highlight the interrelation between the fundamental processes of transcription and translation in the living cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti, S., Halfmann, R., King, O., et al., A systematic survey identifies prions and illuminates sequence features of prionogenic proteins, Cell, 2009, vol. 137, pp. 146–158.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Benn, C.L., Sun, T., Sadri-Vakili, G., et al., Huntingtin modulates transcription, occupies gene promoters in vivo, and binds directly to DNA in a polyglutamine-dependent manner, J. Neurosci., 2008, vol. 28, pp. 10720–10733.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chernoff, Y.O., Newnam, G.P., Kumar, J., et al., Evidence for a ‘protein mutator’ in yeast: role of the hsp70-related chaperone Ssb in formation, stability and toxicity of the [psi] prion, Mol. Cell. Biol., 2012, vol. 19, pp. 8103–8112.

    Google Scholar 

  • Chiti, F. and Dobson, C.M., Protein misfolding, functional amyloid, and human disease, Annu. Rev. Biochem., 2006, vol. 75, pp. 333–366.

    Article  CAS  PubMed  Google Scholar 

  • Cong, S.Y., Pepers, B.A., Zhou, T.T., et al., Huntingtin with an expanded polyglutamine repeat affects the Jab1-p27(Kip1) pathway, Neurobiol. Dis., 2012, vol. 46, pp. 673–681.

    Article  CAS  PubMed  Google Scholar 

  • Crow, E.T. and Li, L., Newly identified prions in budding yeast, and their possible functions, Semin. Cell Dev. Biol., 2011, vol. 22, pp. 452–459.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dagkessamanskaya, A., Ter-Avanesyan, M., and Mager, W.H., Transcriptional regulation of SUP35 and SUP45 in Saccharomyces cerevisiae, Yeast, 1997, vol. 13, pp. 1265–1274.

    Article  CAS  PubMed  Google Scholar 

  • Derkatch, I.L., Bradley, M.E., Zhou, P., et al., Genetic and environmental factors affecting the de novo appearance of the [PSI+] prion in Saccharomyces cerevisiae, Genetics, 1997, vol. 147, pp. 507–519.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Derkatch, I.L., Bradley, M.E., Hong, J.Y., and Liebman, S.W., Prions affect the appearance of other prions: the story of [PIN+], Cell, 2001, vol. 106, pp. 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Hanahan, D., DNA Cloning: a Practical Approach, IRL Press, 1985.

    Google Scholar 

  • Harrison, P.M. and Gerstein, M., A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes, Genome Biol., 2003, vol. 4, p. 40.

    Article  Google Scholar 

  • Inge-Vechtomov, S.G. and Adrianova, V.M., Recessive supersuppressors in yeast, Russ. J. Genet., 1970, vol. 6, pp. 103–115.

    Google Scholar 

  • Inge-Vechtomov, S.G., Tichodeev, O.N., and Karpova, T.S., Selective systems of obtaining of recessive ribosomal suppressors in yeast, Russ. J. Genet., 1988, vol. 24, pp. 1159–1165.

    CAS  Google Scholar 

  • Kaiser, C., Michaelis, S., and Mitchell, A., Methods in Yeast Genetics, New York: Cold Spring Harbor Lab. Press, 1994.

    Google Scholar 

  • Lee, T.I., Rinaldi, N.J., Robert, F., et al., Transcriptional regulatory networks in Saccharomyces cerevisiae, Science, 2002, vol. 298, pp. 799–804.

    Article  CAS  PubMed  Google Scholar 

  • Nizhnikov, A.A., Magomedova, Z.M., Saifitdinova, A.F., et al., Identification of genes encoding potentially amyloidogenic proteins that take part in the regulation of nonsense suppression in yeast Saccharomyces cerevisiae, Russ. J. Genet.: Appl. Res., 2012a, vol. 2, pp. 399–405.

    Google Scholar 

  • Nizhnikov, A.A., Magomedova, Z.M., Rubel, A.A., et al., [nsi+] determinant has a pleiotropic phenotypic manifestation that is modulated by SUP35, SUP45, and VTS1 genes, Curr. Genet., 2012b, vol. 58, pp. 35–47.

    Article  CAS  PubMed  Google Scholar 

  • Ong, W., Ibrahim, M., Town, M., and Johnson, J., Functional differences among the six Saccharomyces cerevisiae tRNATrp genes, Yeast, 1997, vol. 13, pp. 1357–1362.

    Article  CAS  PubMed  Google Scholar 

  • Ono, B., Yoshida, R., Kamiya, K., and Sugimoto, T., Suppression of termination mutations caused by defects of the NMD machinery in Saccharomyces cerevisiae, Genes Genet. Syst., 2005, vol. 80, pp. 311–316.

    Article  CAS  PubMed  Google Scholar 

  • Osherovich, L.Z. and Weissman, J.S., Multiple Gln/Asnrich prion domains confer susceptibility to induction of the yeast [PSI+] prion, Cell, 2001, vol. 106, pp. 183–194.

    Article  CAS  PubMed  Google Scholar 

  • Rogoza, T., Goginashvili, A., Rodionova, S., et al., Non-Mendelian determinant [ISP+] in yeast is a nuclearresiding prion form of the global transcriptional regulator Sfp1, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 10573–10577.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubel, A.A., Saifitdinova, A.F., Lada, A.G., Nizhnikov, A.A., Inge-Vechtomov, S.G., and Galkin, A.P., Yeast chaperone Hsp104 controls gene expression at the posttranscriptional level, Molecular Biology., 2008, vol. 42, pp. 110–116.

    Article  CAS  Google Scholar 

  • Saifitdinova, A.F., Nizhnikov, A.A., Lada, A.G., et al., [NSI+]: a novel non-Mendelian suppressor determinant in Saccharomyces cerevisiae, Curr. Genet., 2010, vol. 56, pp. 467–478.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Lab. Press, 1989.

    Google Scholar 

  • Sherman, F., Fink, G.R., and Hancks, J.B., Methods in Yeast Genetics, New York: Cold Spring Harbor Lab. Press, 1986.

    Google Scholar 

  • Stansfield, I., Jones, K.M., Kushnirov, V.V., et al., The products of the SUP45 (eRF1) and SUP35 genes interact to mediate translation termination in Saccharomyces cerevisiae, EMBO J., 1995, vol. 14, pp. 4365–4373.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ter-Avanesyan, M.D., Dagkesamanskaya, A.R., Kushnirov, V.V., and Smirnov, V.N., The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [PSI+] in the yeast Saccharomyces cerevisiae, Genetics, 1994, vol. 137, pp. 671–676.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weiss, W.A., Edelman, I., Culbertson, M.R., and Friedberg, E.C., Physiological levels of normal tRNA(CAGGln) can effect partial suppression of amber mutations in the yeast Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. USA, 1987, vol. 84, pp. 8031–8034.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wickner, R.B., [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae, Science, 1994, vol. 264, pp. 566–569.

    Article  CAS  PubMed  Google Scholar 

  • Workman, C.T., Mac, H.C., and McCuine, S., A systems approach to mapping DNA damage response pathways, Science, 2006, vol. 19, pp. 1054–1059.

    Article  Google Scholar 

  • Zakharov, I.A., Kozhin, S.A., Kozhnina, T.N., and Fedorova, I.V., The Collection of Techniques in Yeast Genetics, Leningrad: Nauka, 1984.

    Google Scholar 

  • Zhouravleva, G., Frolova, L., Le Goff, X., et al., Termination of translation in eukaryotes is governed by two interacting polypeptide chain release factors, eRF1 and eRF3, EMBO J., 1995, vol. 14, pp. 4065–4072.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Nizhnikov.

Additional information

Published in Russian in Ekologicheskaya Genetika, 2013, Vol. 11, No. 1, pp. 49–58.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nizhnikov, A.A., Kondrashkina, A.M., Antonets, K.S. et al. Overexpression of genes encoding asparagine-glutamine-rich transcriptional factors causes nonsense suppression in Saccharomyces cerevisiae . Russ J Genet Appl Res 4, 122–130 (2014). https://doi.org/10.1134/S2079059714020051

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059714020051

Keywords

Navigation