Skip to main content
Log in

Mouse and human embryonic stem cells

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

This mini-review focuses on the current state of knowledge in mouse and human embryonic stem (ES) cell biology. Methods of ES cell derivation, pluripotency assessment and problems associated with long-term cultivation in vitro are discussed. Attention is given to some unresolved questions of ES cell biology and the prospects for using ES cells in cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bock, C., Kiskinis, E. Verstappen, G., et al., Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines, Cell, 2011, vol. 144, no. 3, pp. 439–452.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, A., Evans, M., Kaufman, M.H., and Robertson, E., Formation of germ-line chimaeras from embryoderived teratocarcinoma cell lines, Nature, 1984, vol. 309, no. 5965, pp. 255–256.

    Article  PubMed  CAS  Google Scholar 

  • Bryja, V., Bonilla, S., Cajanek, L., et al., An efficient method for the derivation of mouse embryonic stem cells, Stem Cells, 2006, vol. 24, no. 4, pp. 844–849.

    Article  PubMed  Google Scholar 

  • Chambers, I., Colby, D., Robertson, M., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells, Cell, 2003, vol. 113, no. 5, pp. 643–655.

    Article  PubMed  CAS  Google Scholar 

  • Dean, W., Bowden, L., Aitchison, A., et al., Altered imprinted gene methylation and expression in completely ES cell-derived mouse fetuses: association with aberrant phenotypes, Development, 1998, vol. 125, no. 12, pp. 2273–2282.

    PubMed  CAS  Google Scholar 

  • Evans, M.J., The isolation and properties of a clonal tissue culture strain of pluripotent mouse teratocarcinoma cells, J. Embryol. Exp. Morphol., 1972, vol. 28, pp. 163–196.

    PubMed  CAS  Google Scholar 

  • Evans, M.J. and Kaufman, M.H., Establishment in culture of pluripotential cells from mouse embryos, Nature, 1981, vol. 292, pp. 154–156.

    Article  PubMed  CAS  Google Scholar 

  • Evans, M., Discovering pluripotency: 30 years of mouse embryonic stem cells, Nat. Rev. Mol. Cell. Biol., 2011, vol. 12, no. 10, pp. 680–686.

    Article  PubMed  CAS  Google Scholar 

  • Friel, R., van der Sar, S., and Mee, P.J., Embryonic stem cells: understanding their history, cell biology and signaling, Adv. Drug Deliv. Rev., 2005, vol. 57, no. 13, pp. 1894–1903.

    Article  PubMed  CAS  Google Scholar 

  • Guo, J., Jauch, A., Heidi, H.G., et al., Multicolor karyotype analyses of mouse embryonic stem cells, In Vitro Cell. Dev. Biol. Anim., 2005, vol. 41, nos. 8/9, pp. 278–283.

    Article  PubMed  Google Scholar 

  • Hanna, J., Cheng, A.W., Saha, K., et al., Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs, Proc. Natl. Acad. Sci. U.S.A., 2010a, vol. 107, pp. 9222–9227.

    Article  PubMed  CAS  Google Scholar 

  • Hanna, J.H., Saha, K., and Jaenisch, R., Pluripotency and cellular reprogramming: facts, hypotheses, unresolved issues, Cell, 2010b, vol. 143, no. 4, pp. 508–525.

    CAS  Google Scholar 

  • Hayashi, K., Ohta, H., Kurimoto, K., et al., Reconstitution of the mouse germ cell specification pathway in culture by pluripotent stem cells, Cell, 2011, vol. 146, no. 4, pp. 519–532.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, K., Ogushi, S., Kurimoto, K., et al., Offspring from oocytes derived from in vitro primordial germ cell-like cells in mice, Science, 2012, vol. 338, pp. 971–975.

    Article  PubMed  CAS  Google Scholar 

  • Holubcová, Z., Matula, P., Sedlackova, M., et al., Human embryonic stem cells suffer from centrosomal amplification, Stem Cells, 2011, vol. 29, no. 1, pp. 46–56.

    Article  PubMed  Google Scholar 

  • Laurent, L.C., Ulitsky, I., Slavin, I., et al., Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture, Cell. Stem. Cell, 2011, vol. 8, no. 1, pp. 106–118.

    Article  PubMed  CAS  Google Scholar 

  • Li, P., Tong, C., Mehrian-Shai, R., et al., Germline competent embryonic stem cells derived from rat blastocysts, Cell, 2008, vol. 135, no. 7, pp. 1299–1310.

    Article  PubMed  CAS  Google Scholar 

  • Liang, Q., Conte, N., Skarnes, W.C., and Bradley, A., Extensive genomic copy number variation in embryonic stem cells, Proc. Natl. Acad. Sci. U.S.A., 2008, vol. 105, no. 45, pp. 17453–17456.

    Article  PubMed  CAS  Google Scholar 

  • Liu, X., Wu, H., Loring, J., et al., Trisomy eight in ES cells is a common potential problem in gene targeting and interferes with germ line transmission, Dev. Dyn., 1997, vol. 209, no. 1, pp. 85–91.

    Article  PubMed  CAS  Google Scholar 

  • Macfarlan, T.S., Gifford, W.D., Driscoll, S., et al., Embryonic stem cell potency fluctuates with endogenous retrovirus activity, Nature, 2012, vol. 487, no. 7405, pp. 57–63.

    PubMed  CAS  Google Scholar 

  • Mantel, C., Guo, Y., Lee, M.R., et al., Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotópic instability, Blood, 2007, vol. 109, no. 10, pp. 4518–4527.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.R. and Evans, M.J., Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro, Proc. Natl. Acad. Sci. U.S.A., 1975, vol. 72, pp. 1441–1445.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells, Proc. Natl. Acad. Sci. U.S.A., 1981, vol. 78, pp. 7634–7638.

    Article  PubMed  CAS  Google Scholar 

  • Medvedev, S.P., Shevchenko, A.I., Sukhikh, G.T., and Zakiyan, S.M., Indutsirovannye plyuripotentnye stvolovye kletki (Induced Pluripotent Stem Cells), Novosibirsk: Izd. Sib. Otd. Ros. Akad. Nauk, 2011.

    Google Scholar 

  • Mintz, B. and Illmensee, K., Normal genetically mosaic mice produced from malignant teratocarcinoma cells, Proc. Natl. Acad. Sci. U.S.A., 1975, vol. 72, pp. 3585–3589.

    Article  PubMed  CAS  Google Scholar 

  • Nagy, A., Gocza, E., Diaz, E.M., et al., Embryonic stem cells alone are able to support fetal development in the mouse, Development, 1990, vol. 110, no. 3, pp. 815–821.

    PubMed  CAS  Google Scholar 

  • Nagy, A., Rossant, J., Nagy, R., et al., Derivation of completely cell culture-derived mice from early-passage embryonic stem cells, Proc. Natl. Acad. Sci. U.S.A., 1993, vol. 90, no. 18, pp. 8424–8428.

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J., Evans, E.P., and Smith, A.G., Establishment of germ-line-competent embryonic stem (ES) cells using differentiation inhibiting activity, Development, 1990, vol. 110, no. 4, pp. 1341–1348.

    PubMed  CAS  Google Scholar 

  • Nishikawa, S., Jakt, L.M., and Era, T., Embryonic stemcell culture as a tool for developmental cell biology, Nat. Rev. Mol. Cell. Biol., 2007, vol. 8, no. 6, pp. 502–507.

    Article  PubMed  CAS  Google Scholar 

  • Papaioannou, V.E., McBurney, M.W., Gardner, R.L., and Evans, M.J., Fate of teratocarcinoma cells injected into early mouse embryos, Nature, 1975, vol. 258, pp. 70–73.

    Article  PubMed  CAS  Google Scholar 

  • Rugg-Gunn, P.J., Ferguson-Smith, A.C., and Pedersen, R.A., Status of genomic imprinting in human embryonic stem cells as revealed by a large cohort of independently derived and maintained lines, Hum. Mol. Genet., 2007, vol. 16, no. 2, pp. 243–251.

    Article  Google Scholar 

  • Solter, D. and Knowles, B.B., Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc. Natl. Acad. Sci. U.S.A., 1978, vol. 75, pp. 5565–5569.

    Article  PubMed  CAS  Google Scholar 

  • Stevens, L.C. and Little, C.C., Spontaneous testicular teratomas in an inbred strain of mice, Proc. Natl. Acad. Sci. U.S.A., 1954, vol. 40, pp. 1080–1087.

    Article  PubMed  CAS  Google Scholar 

  • Sugawara, A., Goto, K., Sotomaru, Y., et al., Current status of chromosomal abnormalities in mouse embryonic stem cell lines used in Japan, Comp. Med., 2006, vol. 56, no. 1, pp. 31–34.

    PubMed  CAS  Google Scholar 

  • Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, vol. 126, no. 4, pp. 663–676.

    Article  PubMed  CAS  Google Scholar 

  • Tam, P.P. and Rossant, J., Mouse embryonic chimeras: tools for studying mammalian development, Development, 2003, vol. 130, no. 25, pp. 6155–6163.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Kalishman, J., Golos, T.G., et al., Isolation of a primate embryonic stem cell line, Proc. Natl. Acad. Sci. U.S.A., 1995, vol. 92, no. 17, pp. 7844–7848.

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J.A., Itskovitz-Eldor, J., Shapiro, S.S., et al., Embryonic stem cell lines derived from human blastocysts, Science, 1998, vol. 282, no. 5391, pp. 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  • Vierbuchen, T., Ostermeier, A., Pang, Z.P., et al., Direct conversion of fibroblasts to functional neurons by defined factors, Nature, 2010, vol. 463, no. 7284, pp. 1035–1041.

    Article  PubMed  CAS  Google Scholar 

  • Watanabe, K., Ueno, M., Kamiya, D., et al., A rock inhibitor permits survival of dissociated human embryonic stem cells, Nat. Biotechnol., 2007, vol. 25, no. 6, pp. 681–686.

    Article  PubMed  CAS  Google Scholar 

  • Wobus, A.M. and Boheler, K.R., Embryonic stem cells: prospects for developmental biology and cell therapy, Physiol. Rev., 2005, vol. 85, no. 2, pp. 635–678.

    Article  PubMed  CAS  Google Scholar 

  • Ying, Q.L., Nichols, J., Chambers, I., and Smith, A., BMP induction of id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3, Cell, 2003, vol. 115, no. 3, pp. 281–292.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Menzorov.

Additional information

Original Russian Text © A.G. Menzorov, 2013, published in Vavilovskii Zhurnal Genetiki i Selektsii, 2013, Vol. 17, No. 2, pp. 234–245.

This paper was written on the basis of the report read at the Institute of Cytology and Genetics, Russian Academy of Sciences (http://www.bionet.nsc.ru/asp/?page_id=86).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menzorov, A.G. Mouse and human embryonic stem cells. Russ J Genet Appl Res 3, 426–434 (2013). https://doi.org/10.1134/S2079059713060063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059713060063

Keywords

Navigation