Skip to main content
Log in

Researching the mechanisms of PHO3 gene regulation depending on the nitrogen source in medium in yeast Saccharomyces cerevisiae

  • Published:
Russian Journal of Genetics: Applied Research

Abstract

Delicate regulation of gene expression is performed through competition of transcriptional factors for promoters that provides punctual cell response to environmental changes. Gene PHO3 of yeast S. cerevisiae encodes the constitutive acid phosphatase. In this work we have researched the genetic control of PHO3 gene expression depending on the source of nitrogen in medium. The PHO3 expression level was proven to decrease with yeast using a poor nitrogen source like urea. Possible regulatory mechanisms for gene PHO3 were revealed involving a repressor of nitrogen regulated genes Gzf3p and ubiquitin ligase Rsp5p.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajwa, W., Meyhack, B., Rudolph, H., et al., Structural of Two Tandemly Repeated Acid Phosphatase Genes in Yeast, Nucleic Acids Res., 1984, vol. 12, no. 20, pp. 7721–7739.

    Article  PubMed  CAS  Google Scholar 

  • Bradley, P.H., Brauer, M.J., Rabinowitz, J.D., and Troyanskaya, O.G., Coordinated Concentration Changes of Transcripts and Metabolites in Saccharomyces cerevisiae, PLoS Comput. Biol., 2009, vol. 5, no. 1, pp. 1–15.

    Article  Google Scholar 

  • Cardenas, M.E., Cutler, N.S., Lorenz, M.C., et al., The TOR Signaling Cascade Regulates Gene Expression in Response To Nutrients, Genes Dev., 1999, vol. 13, no. 24, pp. 3271–3279.

    Article  PubMed  CAS  Google Scholar 

  • Coffman, J.A., Rai, R., Cooper, T.G., et al., Genetic Evidence for Gln3p-Independent, Nitrogen Catabolite Repression-Sensitive Gene Expression in Saccharomyces cerevisiae, J. Bacteriol., 1995, vol. 177, no. 23, pp. 6910–6918.

    PubMed  CAS  Google Scholar 

  • Cooper, T.G., Ferguson, D., Rai, R., et al., The GLN3 Gene Product Is Required for Transcriptional Activation of Allantoin System Gene Expression in Saccharomyces cerevisiae, J. Bacteriol., 1990, vol. 172, no. 2, pp. 1014–1018.

    PubMed  CAS  Google Scholar 

  • Costanzo, M., Baryshnikova, A., Bellay, J., et al., The Genetic Landscape of a Cell, Science, 2010, vol. 327, no. 5964, pp. 425–431.

    Article  PubMed  CAS  Google Scholar 

  • Crespo, J.L., Helliwell, S.B., Wiederkehr, C., et al., NPR1 Kinase and RSP5-BUL1/2 Ubiquitin Ligase Control GLN3-Dependent Transcription in Saccharomyces cerevisiae, J. Biol. Chem., 2004, vol. 279, no. 36, pp. 37512–37517.

    Article  PubMed  CAS  Google Scholar 

  • Deed, N.K., van Vuuren, H.J.J., and Gardner, R.C., Effects of Nitrogen Catabolite Repression and Di-Ammonium Phosphate Addition during Wine Fermentation by a Commercial Strain of S. cerevisiae, Appl. Microbiol. Biotechnol., 2011, no. 89, pp. 1537–1549.

  • Gancedo, J.M., Yeast Carbon Catabolite Repression, Microbiol. Mol. Biol. Rev., 1998, vol. 62, no. 2, pp. 334–361.

    PubMed  CAS  Google Scholar 

  • Glants, S., Mediko-biologicheskaya statistika (Biomedical Statistics), Moscow: Praktika, 1999.

    Google Scholar 

  • Guthrie, C. and Fink, G.R., Guide to Yeast Genetics and Molecular Biology, Academic Press, 1991, vol. 194.

  • Harreman, M., Taschner, M., Sigurdsson, S., et al., Distinct Ubiquitin Ligases Act Sequentially for RNA Polymerase II Polyubiquitylation, Proc. Natl. Acad. Sci. USA, 2009, vol. 06, no. 49, pp. 20705–20710.

    Article  Google Scholar 

  • Johnston, M. and Carlson, M., Regulation of Carbon and Phosphate Utilization, Mol. Cell. Biol. Y. Sacch.: Gene Expression, 1992, vol. 2, pp. 193–255.

    Google Scholar 

  • Li, M., Petteys, B.J., McClure, J.M., et al., Thiamine Biosynthesis in Saccharomyces cerevisiae Is Regulated by the NAD+-Dependent Histone Deacetylase Hst1, Mol. Cell. Biol., 2010, vol. 30, no. 13, pp. 3329–3341.

    Article  PubMed  CAS  Google Scholar 

  • Magasanik, B. and Kaiser, C.A., Nitrogen Regulation in Saccharomyces cerevisiae, Gene, 2002, no. 290, pp. 1–18.

  • Maniatis, T., Fritsch, E.F., and Sambrook, J., Molecular Cloning, Cold Spring Harbor, New York: Cold Spring Harbor Lab. Press, 1982.

    Google Scholar 

  • Matsuyama, A., Shirai, A., and Yoshida, M., A Series of Promoters for Constitutive Expression of Heterologous Genes in Fission Yeast, Yeast, 2008, vol. 25, no. 5, pp. 371–376.

    Article  PubMed  CAS  Google Scholar 

  • Meselson, M. and Yuan, Y., DNA Restriction Enzyme from E. coli, Nature, 1968, vol. 217, pp. 1110–1114.

    Article  PubMed  CAS  Google Scholar 

  • Meyhack, B., Bajwa, W., Rudolph, H., et al., Two Yeast Acid Phosphatase Structural Genes Are the Result of a Tandem Duplication and Show Different Degrees of Homology in Their Promoter and Coding Sequences, EMBO J., 1982, vol. 1, no. 6, pp. 675–680.

    PubMed  CAS  Google Scholar 

  • Nosaka, K., High Affinity of Acid Phosphatase Encoded by PHO3 Gene in Saccharomyces cerevisiae for Thiamin Phosphates, Biochim. Biophys. Acta, 1990, no. 1037, pp. 147–154.

  • Nosaka, K., Kaneko, Y., Nishimura, H., et al., Isolation and Characterization of a Thiamin Pyrophosphokinase Gene, THI80, from Saccharomyces cerevisiae, J. Biol. Chem., 1993, vol. 268, no. 23, pp. 17440–17447.

    PubMed  CAS  Google Scholar 

  • Ogawa, N., DeRisi, J., and Brown, P.O., New Components of System for Phosphate Accumulation and Polyphosphate Metabolism in Saccharomyces Cerevisiae Revealed by Genomic Expression Analysis, Mol. Biol. Cell, 2000, vol. 11, no. 12, pp. 4309–4321.

    PubMed  CAS  Google Scholar 

  • Okabayashi, K., Oi, H., Hirabayashi, K., et al., Albumin Gene-Containing Plasmid, Transformant Carrying Same, Production of Such Transformant and Production of Albumin, Green Cross, 1990, p. EP0399455.

  • Ostanin, K.V., Smirnova, T.M., Myasnikov, A.N., et al., Expression Vectors Based on Promoters of PHO3 and PHO5 Genes of the Yeast Saccharomyces cerevisiae: Constructing, Comparative Efficiency Evaluation, and Use for Overproduction of Phosphoribosyl-Aminoimidazole Carboxylase, Biopolim. Kletka, 1988, no. 4, pp. 259–266.

  • Parfenova, L.V., Smirnov, M.N., Sambuk, E.V., and Padkina, M.V., Production of Human γ-Interferon in the Yeast Saccharomyces cerevisiae Leads to a Decrease in the Activity of Cytochrome c Oxidase, Biotekhnologiya, 2002, no. 6, pp. 23–30.

  • Peng, J., Schwartz, D., Elias, J.E., et al., A Proteomic Approach to Understanding Protein Ubiquitination, Nat. Biotechnol., 2003, vol. 21, no. 8, pp. 921–926.

    Article  PubMed  CAS  Google Scholar 

  • Pina, B., Fernandez-Larrea, J., Garcia-Reyro, N., et al., The Different (Sur)Faces of Rap1p, Mol. Gen. Genomics, 2003, no. 268, pp. 791–798.

  • Popova, Yu.G., Padkina, M.V., and Sambuk, E.V., Effect of Mutations in Genes PH085 and PH04 on Proline Utilization in Yeast Saccharomyces cerevisiae, Russ. J. Genet., 2000, vol. 36, no. 12, pp. 1364–1369.

    Article  CAS  Google Scholar 

  • Saccharomyces Genome Database. http://www.yeastge-nome.org

  • Sambuk, E.V., Genetic Mechanisms of Realization of the Law of Limiting Factor in Saccharomyces cerevisiae, Zh. Obshch. Biol., 2005, vol. 66, no. 4, pp. 310–325.

    PubMed  CAS  Google Scholar 

  • Scherens, B., Feller, A., Vierendeels, F., et al., Identification of Direct and Indirect Targets of the Gln3 and Gat1 Activators by Transcriptional Profiling in Response to Nitrogen Availability in the Short and Long Term, FEMS Yeast Res., 2006, no. 6, pp. 777–791.

  • Singleton, C.K., Identification and Characterization of the Thiamine Transporter Gene of Saccharomyces cerevisiae, Gene, 1997, no. 199, pp. 111–121.

  • Stanbrough, M., Rowen, D.W., and Magasanik, B., Role of the GATA Factors Gln3p and Nil1p of Saccharomyces cerevisiae in the Expression of Nitrogen-Regulated Genes, Biochemistry, 1995, vol. 92, pp. 9450–9454.

    CAS  Google Scholar 

  • Staschke, K.A., Dey, S., Zaborske, J.M., et al., Integration of General Amino Acid Control and Target of Rapamycin (TOR) Regulatory Pathways in Nitrogen Assimilation in Yeast, J. Biol. Chem., 2010, vol. 285, no. 22, pp. 16893–16911.

    Article  PubMed  CAS  Google Scholar 

  • Tate, J.J., Rai, R., and Cooper, T.G., Ammonia-Specific Regulation of Gln3 Localization in Saccharomyces cerevisiae by Protein Kinase Nrp1, J. Biol. Chem., 2006, vol. 281, no. 38, pp. 28460–28469.

    Article  PubMed  CAS  Google Scholar 

  • Vignols, F., Brehelin, C., Surdin-Kerjan, Y., et al., A Yeast Two-Hybrid Knockout Strain to Explore Thioredoxin-Interacting Proteins in vivo, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, no. 46, pp. 16729–16734.

    Article  PubMed  CAS  Google Scholar 

  • Zakharov, I.A., Kozhin, S.A., Kozhina, T.N., and Fedorova, I.V., Sbornik metodik po genetike drozhzheisakharomitsetov (Collected Methods on Genetics of the Yeast Saccharomyces), Leningrad: Nauka, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Savinov.

Additional information

Original Russian Text © V.A. Savinov, A.Yu. Fizikova, A.M. Rumyantsev, E.V. Sambuk, 2011, published in Ekologicheskaya Genetika, 2011, Vol. 9, No. 4, pp. 70–78.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savinov, V.A., Fizikova, A.Y., Rumyantsev, A.M. et al. Researching the mechanisms of PHO3 gene regulation depending on the nitrogen source in medium in yeast Saccharomyces cerevisiae . Russ J Genet Appl Res 2, 405–412 (2012). https://doi.org/10.1134/S207905971205005X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207905971205005X

Keywords

Navigation