Skip to main content
Log in

Modeling of the evolution of legume-rhizobia symbiosis towards improved functional integrity of partners and ecological efficiency of their interactions

  • Published:
Russian Journal of Genetics: Applied Research

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Modeling of coevolution of nodular bacteria and legume plants allowed us to propose a mathematical criterion (index) of functional integrity of symbiosis (FIS), which is based on analysis of genotype frequency covariation matrices with fluctuating system parameters. We found FIS to be positively correlated with the ecological efficiency of symbiosis (its impact on seed productivity of plants) and negatively correlated with the diversity indices of partners. These dependences allow us to explain the increase in the structural-functional integrity of symbiosis, which is characteristic for its macroevolution, by natural selection of the increase of interaction efficiency of partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Vorob’ev, N.I. and Provorov, N.A., Modeling the Evolution of Legume-Rhizobial Symbiosis with Bacteria Multishtammovoy Competition for the Inoculation of Symbiotic Niches, Ekol. Genet., 2008, vol.6, no. 4, pp. 3–11.

    Google Scholar 

  • Vorobyeva, E.I., Problem of Organism Integrity and Its Perspectives, Biol. Bull., 2006, vol.31, no. 5, pp. 427–436.

    Google Scholar 

  • Gorban’, A.N, Manchuk, V.T., and Petushkova, E.V., Dynamics of Correlations between Physiological Parameters during Adaptation and Ecological-Evolutionary Principle of Multifactoriality, in Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem (Problems of Ecological Monitoring and Modeling of Ecosystems), Leningrad: Gidrometeoizdat, 1987, vol.10, pp. 187–198.

    Google Scholar 

  • D’yakov, Yu.T., Ozeretskovskaya, O.L., Dzhavakhiya, V.G., and Bagirova, S.F., Obshchaya i molekulyarnaya fitopatologiya (General and Molecular Phytopathology), Moscow: Obshch. Fitopatol., 2001.

    Google Scholar 

  • Kulaichev, A.P., Metody i sredstva kompleksnogo analiza dannykh (Methods and Tools for Complex Data Analysis), Moscow: FORUM-INFRA-M, 2006.

    Google Scholar 

  • Provorov, N.A., Genetic and Evolutionary Basis of the Teaching about Symbiosis, Zh. Obshch. Biol., 2001, vol.62, no. 6, pp. 472–495.

    PubMed  CAS  Google Scholar 

  • Provorov, N.A., Borisov, A.Yu., and Tikhonovich, I.A., Comparative Genetics and Evolutionary Morphology of Symbiosis Formed by Plants with Nitrogen-Fixing Microbes and Endomycorrhizal Fungi, Zh. Obshch. Biol., 2002, vol.63, no. 6, pp. 451–472.

    PubMed  CAS  Google Scholar 

  • Provorov, N.A. and Vorob’ev, N.I., Simulation of Bacteria-Plant Coevolution in the Mutualistic Symbiosis, Russ. J. Genet., 2009, vol.45, no. 5, pp. 581–594.

    Article  CAS  Google Scholar 

  • Rostova, N.S. and Brutch, N.B., Genotypic and Environmental Correlations of Some Traits of Flax, Tr. Prikl. Bot. Genet. Sel., 1989, vol.125, pp. 56–64.

    Google Scholar 

  • Severtsov, A.N., Glavnye napravleniya evolyutsionnogo protsessa (The Main Directions of the Evolutionary Process), Moscow: Mosk. Gos. Univ., 1967.

    Google Scholar 

  • Tikhonovich, I.A. and Provorov, N.A., Symbiogenetics of Plant-Microbe Interactions, Ekol. Genet., 2003, vol.1, pp. 36–46.

    Google Scholar 

  • Tikhonovich, I.A. and Provorov, N.A., Simbiozy rastenii i mikroorganizmov: molekulyarnaya genetika agrosistem budushchego (Symbiosis of Plants and Microorganisms: Molecular Genetics of Agricultural Systems of the Future), St. Petersburg: St.-Peterb. Gos. Univ., 2009.

    Google Scholar 

  • Schmalhausen, I.I., Puti i zakonomernosti evolyutsionnogo protsessa (Pathways and Patterns of the Evolutionary Process), Moscow: Nauka, 1983.

    Google Scholar 

  • Yablokov, A.V. and Yusufov, A.G., Evolyutsionnoe uchenie (Evolutionary Theory), Moscow: Vysshaya Shkola, 2004.

    Google Scholar 

  • Douglas, A.E., Host Benefit and the Evolution of Specialization in Symbiosis, Heredity, 1998, vol.81, no. 6, pp. 599–603.

    Article  Google Scholar 

  • Frank, S.A., Genetics of Mutualism: the Evolution of Altruism between Species, J. Theor. Biol., 1994, vol.170, pp. 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, T.F. and Martins, E.P., Translating between Microevolutionary Processes and Macroevolutionary Patterns: The Correlation Structure of Inter-Specific Data, Evolution, 1996, vol.50, pp. 1404–1417.

    Article  Google Scholar 

  • Lammerts van Bueren, E.T., Struik, P.C., Tiemens-Hulscher, M., and Jacobsen, E., Concepts of Intrinsic Value and Integrity of Plants on Organic Plant Breeding and Propagation, Crop. Sci., 2003, vol.43, pp. 1922–1929.

    Article  Google Scholar 

  • Lewis, D.H., Microorganisms and Plants: The Evolution of Parasitism and Mutualism, in Evolution of Microbial World, Cambridge: Cambridge Univ. Press, 1974, pp. 367–392.

    Google Scholar 

  • Nei, M., Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals, Genetics, 1978, vol.89, pp. 583–590.

    PubMed  CAS  Google Scholar 

  • Provorov, N.A., Saimnazarov, U.B., Bahromov, I.U., Pulatova, D.Z., Kozhemyakov, A.P., and Kurbanov, G.A., Effect of Rhizobia Inoculation on the Seed (Herbage) Production of Mungbean (Phaseolus aureus Roxb.) Grown at Uzbekistan, J. Arid. Environ., 1998, vol.39, pp. 569–575.

    Article  Google Scholar 

  • Provorov, N.A. and Vorobyov, N.I., Equilibrium between the “Genuine Mutualists” and “Symbiotic Cheaters” in the Bacterial Population Co-Evolving with Plants in a Facultative Symbiosis, Theor. Population Biol., 2008, vol.74, no. 4, pp. 345–355.

    Article  Google Scholar 

  • Provorov, N.A. and Vorobyov, N.I., Host Plant as on Organizer of Microbial Evolution in the Beneficial Symbioses, Phytochem. Rev., 2009, vol.8, pp. 519–534.

    Article  CAS  Google Scholar 

  • Sprent, J.I., Evolving Ideas of Legume Evolution and Diversity: A Taxonomic Perspective on the Occurrence of Nodulation, New Phytol., 2007, vol.174, pp. 11–25.

    Article  PubMed  CAS  Google Scholar 

  • Tikhonovich, I.A. and Provorov, N.A., From Plant-Microbe Interactions to Symbiogenetics: a Universal Paradigm for the Inter-Species Genetic Integration, Ann. Appl. Biol., 2009, vol.154, no. 3, pp. 341–350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.I. Vorobiev, N.A. Provorov, 2010, published in Ekologicheskaya Genetika, 2010, Vol. 8, No. 3, pp. 17–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorobiev, N.I., Provorov, N.A. Modeling of the evolution of legume-rhizobia symbiosis towards improved functional integrity of partners and ecological efficiency of their interactions. Russ J Genet Appl Res 1, 448–457 (2011). https://doi.org/10.1134/S2079059711050169

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2079059711050169

Keywords

Navigation